Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 436702, 11 pages
http://dx.doi.org/10.1155/2013/436702
Clinical Study

Subclinical Cardiovascular System Changes in Obese Patients with Juvenile Idiopathic Arthritis

1Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Waszyngtona 17 Street, 15-274 Białystok, Poland
2Department of Pediatrics and Developmental Disorders, Medical University of Bialystok, Waszyngtona 17 Street, 15-274 Białystok, Poland
3Department of Statistics and Medical Informatics, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Białystok, Poland
4Department of Rheumatology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24A Street, 15-276 Białystok, Poland

Received 11 November 2012; Accepted 3 February 2013

Academic Editor: Eeva Moilanen

Copyright © 2013 Barbara Głowińska-Olszewska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Berenson, S. R. Srinivasan, W. Bao, W. P. Newman III, R. E. Tracy, and W. A. Wattigney, “Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults,” The New England Journal of Medicine, vol. 338, no. 23, pp. 1650–1656, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. McMahan, S. S. Gidding, Z. A. Fayad et al., “Risk scores predict atherosclerotic lesions in young people,” Archives of Internal Medicine, vol. 165, no. 8, pp. 883–890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. E. W. Kavey, V. Allada, S. R. Daniels et al., “Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association expert panel on population and prevention science; the councils on cardiovascular disease in the young, epidemiology and prevention, nutrition, physical activity and metabolism, high blood pressure research, cardiovascular nursing, and the kidney in heart disease,” Circulation, vol. 114, no. 24, pp. 2710–2738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Aviña-Zubieta, H. K. Choi, M. Sadatsafavi, M. Etminan, J. M. Esdaile, and D. Lacaille, “Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies,” Arthritis Care and Research, vol. 59, no. 12, pp. 1690–1697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Cavagna, N. Boffini, G. Cagnotto, F. Inverardi, V. Grosso, and R. Caporali, “Atherosclerosis and rheumatoid arthritis: more than a simple association,” Mediators of Inflammation, vol. 2012, Article ID 147354, 8 pages, 2012. View at Publisher · View at Google Scholar
  6. A. Gonzalez, H. Maradit Kremers, C. S. Crowson et al., “Do cardiovascular risk factors confer the same risk for cardiovascular outcomes in rheumatoid arthritis patients as in non-rheumatoid arthritis patients?” Annals of the Rheumatic Diseases, vol. 67, no. 1, pp. 64–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. I. A. Ku, J. B. Imboden, P. Y. Hsue, and P. Ganz, “Rheumatoid arthritis—a model of systemic inflammation driving atherosclerosis,” Circulation Journal, vol. 73, no. 6, pp. 977–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Scotece, J. Conde, R. Gomez et al., “Role of adipokines in atherosclerosis: interferences with cardiovascular complications in rheumatic diseases,” Mediators of Inflammation, vol. 2012, Article ID 125458, 14 pages, 2012. View at Publisher · View at Google Scholar
  9. H. M. Kremers, C. S. Crowson, T. M. Therneau, V. L. Roger, and S. E. Gabriel, “High ten-year risk of cardiovascular disease in newly diagnosed rheumatoid arthritis patients: a population-based cohort study,” Arthritis and Rheumatism, vol. 58, no. 8, pp. 2268–2274, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Jednacz and L. Rutkowska-Sak, “Atherosclerosis in juvenile idiopathic arthritis,” Mediators of Inflammation, vol. 2012, Article ID 714732, 5 pages, 2012. View at Publisher · View at Google Scholar
  11. E. Pietrewicz and M. Urban, “Early atherosclerosis changes in children with juvenile idiopathic arthritis,” Polski Merkuriusz Lekarski, vol. 22, no. 129, pp. 211–214, 2007. View at Google Scholar · View at Scopus
  12. A. P. Vlahos, P. Theocharis, A. Bechlioulis et al., “Changes in vascular function and structure in juvenile idiopathic arthritis,” Arthritis Care and Research, vol. 63, no. 12, pp. 1736–1744, 2011. View at Google Scholar
  13. C. B. Ebbeling, D. B. Pawlak, and D. S. Ludwig, “Childhood obesity: public-health crisis, common sense cure,” The Lancet, vol. 360, no. 9331, pp. 473–482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Must, P. F. Jacques, G. E. Dallal, C. J. Bajema, and W. H. Dietz, “Long-term morbidity and mortality of overweight adolescents—a follow-up of the Harvard Growth Study of 1922 to 1935,” The New England Journal of Medicine, vol. 327, no. 19, pp. 1350–1355, 1992. View at Google Scholar · View at Scopus
  15. E. M. Urbina, R. V. Williams, B. S. Alpert et al., “Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the american heart association,” Hypertension, vol. 54, no. 5, pp. 919–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Wallace, E. H. Giannini, B. Huang, L. Itert, and N. Ruperto, “American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis,” Arthritis Care and Research, vol. 63, no. 7, pp. 929–936, 2011. View at Google Scholar
  17. Z. Kułaga, M. Litwin, M. Tkaczyk et al., “Polish 2010 growth references for school-aged children and adolescents,” European Journal of Pediatrics, vol. 170, no. 5, pp. 599–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. J. Cole, M. C. Bellizzi, K. M. Flegal, and W. H. Dietz, “Establishing a standard definition for child overweight and obesity worldwide: international survey,” British Medical Journal, vol. 320, no. 7244, pp. 1240–1243, 2000. View at Google Scholar · View at Scopus
  19. M. C. Corretti, T. J. Anderson, E. J. Benjamin et al., “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 257–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Głowińska-Olszewska, J. Tołwińska, and M. Urban, “Relationship between endothelial dysfunction, carotid artery intima media thickness and circulating markers of vascular inflammation in obese hypertensive children and adolescents,” Journal of Pediatric Endocrinology and Metabolism, vol. 20, no. 10, pp. 1125–1136, 2007. View at Google Scholar · View at Scopus
  21. C. Jourdan, E. Wühl, M. Litwin et al., “Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents,” Journal of Hypertension, vol. 23, no. 9, pp. 1707–1715, 2005. View at Google Scholar · View at Scopus
  22. S. R. Daniels, T. R. Kimball, J. A. Morrison, P. Khoury, and R. A. Meyer, “Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease,” American Journal of Cardiology, vol. 76, no. 10, pp. 699–701, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. M. Lamb, and K. M. Flegal, “Prevalence of high body mass index in US children and adolescents, 2007-2008,” The Journal of the American Medical Association, vol. 303, no. 3, pp. 242–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. S. Freedman, Z. Mei, S. R. Srinivasan, G. S. Berenson, and W. H. Dietz, “Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study,” Journal of Pediatrics, vol. 150, no. 1, pp. 12.e2–17.e2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. I'Allemand, S. Wiegand, T. Reinehr et al., “Cardiovascular risk in 26,008 European overweight children as established by a multicenter database,” Obesity, vol. 16, no. 7, pp. 1672–1679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Weiss, J. Dziura, T. S. Burgert et al., “Obesity and the metabolic syndrome in children and adolescents,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2362–2374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. C. P. Chung, A. Oeser, J. F. Solus et al., “Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis,” Atherosclerosis, vol. 196, no. 2, pp. 756–763, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. S. Crowson, E. Myasoedova, J. M. Davis III et al., “Increased prevalence of metabolic syndrome associated with rheumatoid arthritis in patients without clinical cardiovascular disease,” Journal of Rheumatology, vol. 38, no. 1, pp. 29–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Gremese and G. Ferraccioli, “The metabolic syndrome: the crossroads between rheumatoid arthritis and cardiovascular risk,” Autoimmunity Reviews, vol. 10, no. 10, pp. 582–589, 2011. View at Google Scholar
  30. G. S. Hotamisligil, A. Budavari, D. Murray, and B. M. Spiegelman, “Reduced tyrosine kinase activity of the insulin receptor in obesity- diabetes. Central role of tumor necrosis factor-α,” The Journal of Clinical Investigation, vol. 94, no. 4, pp. 1543–1549, 1994. View at Google Scholar · View at Scopus
  31. G. S. Hotamisligil, P. Peraldi, A. Budavari, R. Ellis, M. F. White, and B. M. Spiegelman, “IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance,” Science, vol. 271, no. 5249, pp. 665–668, 1996. View at Google Scholar · View at Scopus
  32. S. K. Fried, D. A. Bunkin, and A. S. Greenberg, “Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid,” The Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 3, pp. 847–850, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. D. G. Cook, M. A. Mendall, P. H. Whincup et al., “C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors,” Atherosclerosis, vol. 149, no. 1, pp. 139–150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. E. S. Ford, “C-reactive protein concentration and cardiovascular disease risk factors in children: findings from the National Health and Nutrition Examination Survey 1999-2000,” Circulation, vol. 108, no. 9, pp. 1053–1058, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kapiotis, G. Holzer, G. Schaller et al., “A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 11, pp. 2541–2546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Mauras, C. DelGiorno, C. Kollman et al., “Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children,” The Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 3, pp. 1060–1068, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C. S. Tam, K. Clément, L. A. Baur, and J. Tordjman, “Obesity and low-grade inflammation: a paediatric perspective,” Obesity Reviews, vol. 11, no. 2, pp. 118–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. R. Kramer and J. T. Giles, “Cardiovascular disease risk in rheumatoid arthritis: progress, debate, and opportunity,” Arthritis Care & Research, vol. 63, no. 4, pp. 484–499, 2011. View at Google Scholar · View at Scopus
  39. Y. Aggoun, N. J. Farpour-Lambert, L. M. Marchand, E. Golay, A. B. R. Maggio, and M. Beghetti, “Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure,” European Heart Journal, vol. 29, no. 6, pp. 792–799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Hannawi, T. H. Marwick, and R. Thomas, “Inflammation predicts accelerated brachial arterial wall changes in patients with recent-onset rheumatoid arthritis,” Arthritis Research and Therapy, vol. 11, no. 2, article R51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. W. Lorenz, H. S. Markus, M. L. Bots, M. Rosvall, and M. Sitzer, “Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis,” Circulation, vol. 115, no. 4, pp. 459–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Reinehr, W. Kiess, G. de Sousa, B. Stoffel-Wagner, and R. Wunsch, “Intima media thickness in childhood obesity: relations to inflammatory marker, glucose metabolism, and blood pressure,” Metabolism, vol. 55, no. 1, pp. 113–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. N. Tyrrell, J. Beyene, B. M. Feldman, B. W. McCrindle, E. D. Silverman, and T. J. Bradley, “Rheumatic disease and carotid intima-media thickness: a systematic review and meta-analysis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 5, pp. 1014–1026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Södergren, K. Karp, K. Boman et al., “Atherosclerosis in early rheumatoid arthritis: very early endothelial activation and rapid progression of intima media thickness,” Arthritis Research and Therapy, vol. 12, no. 4, article R158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Szekanecz, G. Kerekes, H. Dér et al., “Accelerated atherosclerosis in rheumatoid arthritis,” Annals of the New York Academy of Sciences, vol. 1108, pp. 349–358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Levy, R. J. Garrison, D. D. Savage, W. B. Kannel, and W. P. Castelli, “Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study,” The New England Journal of Medicine, vol. 322, no. 22, pp. 1561–1566, 1990. View at Google Scholar · View at Scopus
  47. S. Dhuper, R. A. Abdullah, L. Weichbrod, E. Mahdi, and H. W. Cohen, “Association of obesity and hypertension with left ventricular geometry and function in children and adolescents,” Obesity, vol. 19, no. 1, pp. 128–133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Li, S. Li, E. Ulusoy, W. Chen, S. R. Srinivasan, and G. S. Berenson, “Childhood adiposity as a predictor of cardiac mass in adulthood: The Bogalusa Heart Study,” Circulation, vol. 110, no. 22, pp. 3488–3492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. E. M. Urbina, S. S. Gidding, W. Bao, A. S. Pickoff, K. Berdusis, and G. S. Berenson, “Effect of body size, ponderosity, and blood pressure on left ventricular growth in children and young adults in the Bogalusa heart study,” Circulation, vol. 91, no. 9, pp. 2400–2406, 1995. View at Google Scholar · View at Scopus
  50. D. I. Crowley, P. R. Khoury, E. M. Urbina, H. M. Ippisch, and T. R. Kimball, “Cardiovascular impact of the pediatric obesity epidemic: higher left ventricular mass is related to higher body mass index,” Journal of Pediatrics, vol. 158, no. 5, pp. 709–714, 2011. View at Publisher · View at Google Scholar · View at Scopus