Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 678627, 9 pages
http://dx.doi.org/10.1155/2013/678627
Review Article

The NLRP3 Inflammasome as a Novel Player of the Intercellular Crosstalk in Metabolic Disorders

1Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
2Queen Mary University of London, The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London EC1M 6BQ, UK

Received 18 March 2013; Revised 13 May 2013; Accepted 22 May 2013

Academic Editor: Assaf Rudich

Copyright © 2013 Elisa Benetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Stienstra, J. A. van Diepen, C. J. Tack et al., “Inflammasome is a central player in the induction of obesity and insulin resistance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15324–15329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P.-Y. Ting, S. B. Willingham, and D. T. Bergstralh, “NLRs at the intersection of cell death and immunity,” Nature Reviews Immunology, vol. 8, no. 5, pp. 372–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Yeretssian, K. Labbé, and M. Saleh, “Molecular regulation of inflammation and cell death,” Cytokine, vol. 43, no. 3, pp. 380–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. K. Atianand, V. A. Rathinam, and K. A. Fitzgerald, “SnapShot: inflammasomes,” Cell, vol. 153, pp. 272–272.e1, 2013. View at Google Scholar
  5. L. Franchi, R. Muñoz-Planillo, T. Reimer, T. Eigenbrod, and G. Núñez, “Inflammasomes as microbial sensors,” European Journal of Immunology, vol. 40, no. 3, pp. 611–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. T.-D. Kanneganti, “Central roles of NLRs and inflammasomes in viral infection,” Nature Reviews Immunology, vol. 10, no. 10, pp. 688–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Y. Chen and G. Nuñez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Nakahira, J. A. Haspel, V. A. K. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria in NLRP3 inflammasome activation,” Nature, vol. 469, pp. 221–225, 2011. View at Google Scholar
  10. A. Halle, V. Hornung, G. C. Petzold et al., “The NALP3 inflammasome is involved in the innate immune response to amyloid-β,” Nature Immunology, vol. 9, no. 8, pp. 857–865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Hornung, F. Bauernfeind, A. Halle et al., “Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization,” Nature Immunology, vol. 9, no. 8, pp. 847–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Vandanmagsar, Y.-H. Youm, A. Ravussin et al., “The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance,” Nature Medicine, vol. 17, no. 2, pp. 179–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wen, D. Gris, Y. Lei et al., “Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling,” Nature Immunology, vol. 12, no. 5, pp. 408–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. P. R. Vajjhala, R. E. Mirams, and J. M. Hill, “Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein,” The Journal of Biological Chemistry, vol. 287, pp. 41732–41743, 2012. View at Google Scholar
  15. C. A. Dinarello, M. Y. Donath, and T. Mandrup-Poulsen, “Role of IL-1β in type 2 diabetes,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 4, pp. 314–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Spranger, A. Kroke, M. Möhlig et al., “Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study,” Diabetes, vol. 52, no. 3, pp. 812–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Jager, T. Grémeaux, M. Cormont, Y. Le Marchand-Brustel, and J.-F. Tanti, “Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression,” Endocrinology, vol. 148, no. 1, pp. 241–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Kanemaki, H. Kitade, M. Kaibori et al., “Interleukin 1β and interleukin 6, but not tumor necrosis factor α, inhibit insulin-stimulated glycogen synthesis in rat hepatocytes,” Hepatology, vol. 27, no. 5, pp. 1296–1303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. P. A. Cleary, T. J. Orchard, S. Genuth et al., “The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study,” Diabetes, vol. 55, no. 12, pp. 3556–3565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Larsen, M. Faulenbach, A. Vaag et al., “Interleukin-1-receptor antagonist in type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 356, no. 15, pp. 1517–1526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Stienstra, L. A. B. Joosten, T. Koenen et al., “The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity,” Cell Metabolism, vol. 12, no. 6, pp. 593–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. H. Goossens, E. E. Blaak, R. Theunissen et al., “Expression of NLRP3 inflammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans,” Molecular Immunology, vol. 50, no. 3, pp. 142–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. H. M. Lee, J. J. Kim, H. J. Kim, M. Shong, B. J. Ku, and E. K. Jo, “Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes,” Diabetes, vol. 62, pp. 194–204, 2013. View at Google Scholar
  24. H. P. Harding and D. Ron, “Endoplasmic reticulum stress and the development of diabetes: a review,” Diabetes, vol. 51, supplement 3, pp. S455–S461, 2002. View at Google Scholar · View at Scopus
  25. M. Cnop, F. Foufelle, and L. A. Velloso, “Endoplasmic reticulum stress, obesity and diabetes,” Trends in Molecular Medicine, vol. 18, no. 1, pp. 59–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Flamment, E. Hajduch, P. Ferre, and F. Foufelle, “New insights into ER stress-induced insulin resistance,” Trends in Endocrinology & Metabolism, vol. 23, pp. 381–390, 2012. View at Google Scholar
  27. L. Xu, G. A. Spinas, and M. Niessen, “ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport,” Hormone and Metabolic Research, vol. 42, no. 9, pp. 643–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Deng, S. Liu, L. Zou, C. Xu, B. Geng, and G. Xu, “Lipolysis response to endoplasmic reticulum stress in adipose cells,” The Journal of Biological Chemistry, vol. 287, no. 9, pp. 6240–6249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Komura, Y. Sakai, M. Honda, T. Takamura, K. Matsushima, and S. Kaneko, “CD14+ monocytes are vulnerable and functionally impaired under endoplasmic reticulum stress in patients with type 2 diabetes,” Diabetes, vol. 59, no. 3, pp. 634–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Menu, A. Mayor, R. Zhou et al., “ER stress activates the NLRP3 inflammasome via an UPR-independent pathway,” Cell Death and Disease, vol. 3, no. 1, article e261, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. G. Lerner, J. P. Upton, P. V. Praveen et al., “IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress,” Cell Metabolism, vol. 16, pp. 250–264, 2012. View at Google Scholar
  32. J. A. Kummer, R. Broekhuizen, H. Everett et al., “Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response,” Journal of Histochemistry and Cytochemistry, vol. 55, no. 5, pp. 443–452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. Reynolds, F. C. McGillicuddy, K. A. Harford, O. M. Finucane, K. H. Mills, and H. M. Roche, “Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance,” Molecular Nutrition & Food Research, vol. 56, pp. 1212–1222, 2012. View at Google Scholar
  34. H. Ruan, M. J. Zarnowski, S. W. Cushman, and H. F. Lodish, “Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and down-regulates adipocyte genes,” The Journal of Biological Chemistry, vol. 278, no. 48, pp. 47585–47593, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Nov, H. Shapiro, H. Ovadia et al., “Interleukin-1beta regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability,” PLoS One, vol. 8, Article ID e53626, 2013. View at Google Scholar
  36. T. Mandrup-Poulsen, “IAPP boosts islet macrophage IL-1 in type 2 diabetes,” Nature Immunology, vol. 11, no. 10, pp. 881–883, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. J. Collier, S. J. Burke, M. E. Eisenhauer et al., “Pancreatic β-cell death in response to pro-inflammatory cytokines is distinct from genuine apoptosis,” PLoS ONE, vol. 6, no. 7, Article ID e22485, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Ardestani, N. S. Sauter, F. Paroni et al., “Neutralizing interleukin-1β(IL-1β) induces β-cell survival by maintaining PDX1 protein nuclear localization,” The Journal of Biological Chemistry, vol. 286, no. 19, pp. 17144–17155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Zhou, A. Tardivel, B. Thorens, I. Choi, and J. Tschopp, “Thioredoxin-interacting protein links oxidative stress to inflammasome activation,” Nature Immunology, vol. 11, no. 2, pp. 136–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. L. Masters, A. Dunne, S. L. Subramanian et al., “Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β 2 in type 2 diabetes,” Nature Immunology, vol. 11, no. 10, pp. 897–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-H. Youm, A. Adijiang, B. Vandanmagsar, D. Burk, A. Ravussin, and V. D. Dixit, “Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage,” Endocrinology, vol. 152, no. 11, pp. 4039–4045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Madec, C. Rossi, M. Chiarugi et al., “Adipocyte P2X7 receptors expression: a role in modulating inflammatory response in subjects with metabolic syndrome?” Atherosclerosis, vol. 219, no. 2, pp. 552–558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Nov, A. Kohl, E. C. Lewis et al., “Interleukin-1β may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation,” Endocrinology, vol. 151, no. 9, pp. 4247–4256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. B. Imaeda, A. Watanabe, M. A. Sohail et al., “Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome,” The Journal of Clinical Investigation, vol. 119, no. 2, pp. 305–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Watanabe, M. A. Sohail, D. A. Gomes et al., “Inflammasome-mediated regulation of hepatic stellate cells,” American Journal of Physiology, vol. 296, no. 6, pp. G1248–G1257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Csak, M. Ganz, J. Pespisa, K. Kodys, A. Dolganiuc, and G. Szabo, “Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells,” Hepatology, vol. 54, no. 1, pp. 133–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Kamari, A. Shaish, E. Vax et al., “Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice,” Journal of Hepatology, vol. 55, no. 5, pp. 1086–1094, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Liu, M. H. Zaki, P. Vogel et al., “Role of inflammasomes in host defense against Citrobacter rodentium infection,” The Journal of Biological Chemistry, vol. 287, pp. 16955–16964, 2012. View at Google Scholar
  49. I. C. Allen, E. M. Tekippe, R.-M. T. Woodford et al., “The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer,” Journal of Experimental Medicine, vol. 207, no. 5, pp. 1045–1056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. H. Zaki, K. L. Boyd, P. Vogel, M. B. Kastan, M. Lamkanfi, and T.-D. Kanneganti, “The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis,” Immunity, vol. 32, no. 3, pp. 379–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. A. Hirota, J. Ng, A. Lueng et al., “NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis,” Inflammatory Bowel Diseases, vol. 17, no. 6, pp. 1359–1372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Bauer, F. Loher, M. Dauer et al., “The ICE inhibitor pralnacasan prevents DSS-induced colitis in C57BL/6 mice and suppresses IP-10 mRNA but not TNF-α mRNA expression,” Digestive Diseases and Sciences, vol. 52, no. 7, pp. 1642–1652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Bauer, P. Duewell, C. Mayer et al., “Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome,” Gut, vol. 59, no. 9, pp. 1192–1199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Henao-Mejia, E. Elinav, C. Jin et al., “Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity,” Nature, vol. 482, no. 7384, pp. 179–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Matsumoto and K. Kanmatsuse, “Elevated interleukin-18 levels in the urine of nephrotic patients,” Nephron, vol. 88, no. 4, pp. 334–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Lonnemann, D. Novick, M. Rubinstein, and C. A. Dinarello, “Interleukin-18, interleukin-18 binding protein and impaired production of interferon-γ in chronic renal failure,” Clinical Nephrology, vol. 60, no. 5, pp. 327–334, 2003. View at Google Scholar · View at Scopus
  57. S. Gauer, O. Sichler, N. Obermüller et al., “IL-18 is expressed in the intercalated cell of human kidney,” Kidney International, vol. 72, no. 9, pp. 1081–1087, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Vilaysane, J. Chun, M. E. Seamone et al., “The NLRP3 inflammasome promotes renal inflammation and contributes to CKD,” Journal of the American Society of Nephrology, vol. 21, no. 10, pp. 1732–1744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. H.-J. Anders and D. A. Muruve, “The inflammasomes in kidney disease,” Journal of the American Society of Nephrology, vol. 22, no. 6, pp. 1007–1018, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Collino, E. Benetti, M. Rogazzo et al., “Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-delta agonism correlates with impaired NLRP3 inflammasome activation,” Biochemical Pharmacology, vol. 85, pp. 257–264, 2013. View at Google Scholar
  61. C. Jin and R. A. Flavell, “Molecular mechanism of NLRP3 inflammasome activation,” Journal of Clinical Immunology, vol. 30, no. 5, pp. 628–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Q.-H. Hu, X. Zhang, Y. Pan, Y.-C. Li, and L.-D. Kong, “Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats,” Biochemical Pharmacology, vol. 84, pp. 113–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Rawat, T. V. Cohen, B. Ampong et al., “Inflammasome up-regulation and activation in dysferlin-deficient skeletal muscle,” American Journal of Pathology, vol. 176, no. 6, pp. 2891–2900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Boström, J. Wu, M. P. Jedrychowski et al., “A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, no. 7382, pp. 463–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. I. Lundberg, A. K. Kratz, H. Alexanderson, and M. Patarroyo, “Decreased expression of interleukin-1alpha, interleukin-1beta, and cell adhesion molecules in muscle tissue following corticosteroid treatment in patients with polymyositis and dermatomyositis,” Arthritis & Rheumatism, vol. 43, pp. 336–348, 2000. View at Google Scholar
  66. M. Tucci, C. Quatraro, F. Dammacco, and F. Silvestris, “Interleukin-18 overexpression as a hallmark of the activity of autoimmune inflammatory myopathies,” Clinical and Experimental Immunology, vol. 146, no. 1, pp. 21–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Schmidt, K. Barthel, A. Wrede, M. Salajegheh, M. Bähr, and M. C. Dalakas, “Interrelation of inflammation and APP in sIBM: IL-1β induces accumulation of β-amyloid in skeletal muscle,” Brain, vol. 131, no. 5, pp. 1228–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. H.-M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” The Journal of the American Medical Association, vol. 288, no. 21, pp. 2709–2716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Isomaa, P. Almgren, T. Tuomi et al., “Cardiovascular morbidity and mortality associated with the metabolic syndrome,” Diabetes Care, vol. 24, no. 4, pp. 683–689, 2001. View at Google Scholar · View at Scopus
  70. A. A. W. A. van der Heijden, M. M. Ortegon, L. W. Niessen, G. Nijpels, and J. M. Dekker, “Prediction of coronary heart disease risk in a general, pre-diabetic, and diabetic population during 10 years of follow-up: accuracy of the Framingham, SCORE, and UKPDS risk functions—The Hoorn Study,” Diabetes Care, vol. 32, no. 11, pp. 2094–2098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. B. J. Pomerantz, L. L. Reznikov, A. H. Harken, and C. A. Dinarello, “Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2871–2876, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Frantz, A. Ducharme, D. Sawyer et al., “Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction,” Journal of Molecular and Cellular Cardiology, vol. 35, no. 6, pp. 685–694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. F. M. Syed, H. S. Hahn, A. Odley et al., “Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia,” Circulation Research, vol. 96, no. 10, pp. 1103–1109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Merkle, S. Frantz, M. P. Schön et al., “A role for caspase-1 in heart failure,” Circulation Research, vol. 100, no. 5, pp. 645–653, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Kawaguchi, M. Takahashi, T. Hata et al., “Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury,” Circulation, vol. 123, no. 6, pp. 594–604, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Mezzaroma, S. Toldo, D. Farkas et al., “The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 49, pp. 19725–19730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. S. S. Iyer, W. P. Pulskens, J. J. Sadler et al., “Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20388–20393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. A. A. Shigeoka, J. L. Mueller, A. Kambo et al., “An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury,” The Journal of Immunology, vol. 185, pp. 6277–6285, 2010. View at Google Scholar