Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 706156, 15 pages
http://dx.doi.org/10.1155/2013/706156
Research Article

Protective Effects of Necrostatin-1 against Concanavalin A-Induced Acute Hepatic Injury in Mice

Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China

Received 19 April 2013; Revised 15 July 2013; Accepted 14 August 2013

Academic Editor: Muzamil Ahmad

Copyright © 2013 Yingqun Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Wang, H. Nie, K. Li et al., “Curcumin inhibits HMGB1 releasing and attenuates concanavalin A-induced hepatitis in mice,” European Journal of Pharmacology, vol. 697, no. 1–3, pp. 152–157, 2012. View at Publisher · View at Google Scholar
  2. V. L. Hegde, P. S. Nagarkatti, and M. Nagarkatti, “Role of Myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol,” PLoS One, vol. 6, no. 4, Article ID e18281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Tiegs, “Experimental hepatitis and role of cytokines,” Acta Gastro-Enterologica Belgica, vol. 60, no. 2, pp. 176–179, 1997. View at Google Scholar · View at Scopus
  4. H. F. Eggink, H. J. Houthoff, and S. Huitema, “Cellular and humoral immune reactions in chronic active liver disease. I. Lymphocyte subsets in liver biopsies of patients with untreated idiopathic autoimmune hepatitis, chronic active hepatitis B and primary biliary cirrhosis,” Clinical and Experimental Immunology, vol. 50, no. 1, pp. 17–24, 1982. View at Google Scholar · View at Scopus
  5. G. Tiegs, J. Hentschel, and A. Wendel, “A T cell-dependent experimental liver injury in mice inducible by concanavalin A,” Journal of Clinical Investigation, vol. 90, no. 1, pp. 196–203, 1992. View at Google Scholar · View at Scopus
  6. B. Li, R. Sun, H. Wei, B. Gao, and Z. Tian, “Interleukin-15 prevents concanavalin A-induced liver injury in mice via NKT cell-dependent mechanism,” Hepatology, vol. 43, no. 6, pp. 1211–1219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Mizuhara, E. O'Neill, N. Seki et al., “T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6,” Journal of Experimental Medicine, vol. 179, no. 5, pp. 1529–1537, 1994. View at Google Scholar · View at Scopus
  8. P. A. Knolle, G. Gerken, E. Löser et al., “Role of sinusoidal endothelial cells of the liver in concanavalin A-Induced hepatic injury in mice,” Hepatology, vol. 24, no. 4 I, pp. 824–829, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Satoh, K. Kobayashi, M. Ishii, T. Igarashi, and T. Toyota, “Midzonal necrosis of the liver after concanavalin A-injection,” Tohoku Journal of Experimental Medicine, vol. 180, no. 2, pp. 139–152, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Nakaya, M. Hashimoto, R. Nakagawa et al., “SOCS3 in T and NKT cells negatively regulates cytokine production and ameliorates ConA-induced hepatitis,” Journal of Immunology, vol. 183, no. 11, pp. 7047–7053, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Wahl, U. M. Wegenka, F. Leithäuser, R. Schirmbeck, and J. Reimann, “IL-22-dependent attenuation of T cell-dependent (ConA) hepatitis in herpes virus entry mediator deficiency,” Journal of Immunology, vol. 182, no. 8, pp. 4521–4528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Malhi, G. J. Gores, and J. J. Lemasters, “Apoptosis and necrosis in the liver: a tale of two deaths?” Hepatology, vol. 43, no. 2, pp. S31–S44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Thornberry and Y. Lazebnik, “Caspases: enemies within,” Science, vol. 281, no. 5381, pp. 1312–1316, 1998. View at Google Scholar · View at Scopus
  14. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Google Scholar · View at Scopus
  15. N. Festjens, T. Vanden Berghe, and P. Vandenabeele, “Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response,” Biochimica et Biophysica Acta, vol. 1757, no. 9-10, pp. 1371–1387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Degterev, Z. Huang, M. Boyce et al., “Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury,” Nature Chemical Biology, vol. 1, no. 2, pp. 112–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Vandenabeele, L. Galluzzi, T. Vanden Berghe, and G. Kroemer, “Molecular mechanisms of necroptosis: an ordered cellular explosion,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 700–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Vercammen, R. Beyaert, G. Denecker et al., “Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor,” Journal of Experimental Medicine, vol. 187, no. 9, pp. 1477–1485, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Degterev, J. Hitomi, M. Germscheid et al., “Identification of RIP1 kinase as a specific cellular target of necrostatins,” Nature Chemical Biology, vol. 4, no. 5, pp. 313–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Imre, S. Larisch, and K. Rajalingam, “Ripoptosome: a novel IAP-regulated cell death-signalling platform,” Journal of Molecular Cell Biology, vol. 3, no. 6, pp. 324–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Galluzzi, O. Kepp, and G. Kroemer, “RIP kinases initiate programmed necrosis,” Journal of Molecular Cell Biology, vol. 1, no. 1, pp. 8–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Feoktistova, P. Geserick, B. Kellert et al., “cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms,” Molecular Cell, vol. 43, no. 3, pp. 449–463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Tenev, K. Bianchi, M. Darding et al., “The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs,” Molecular Cell, vol. 43, no. 3, pp. 432–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Sasnauskiene, J. Kadziauskas, N. Vezelyte, V. Jonusiene, and V. Kirveliene, “Damage targeted to the mitochondrial interior induces autophagy, cell cycle arrest and, only at high doses, apoptosis,” Autophagy, vol. 5, no. 5, pp. 743–744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Yu, F. Wan, S. Dutta et al., “Autophagic programmed cell death by selective catalase degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4952–4957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Uchiyama, M. Shibata, M. Koike, K. Yoshimura, and M. Sasaki, “Autophagy-physiology and pathophysiology,” Histochemistry and Cell Biology, vol. 129, no. 4, pp. 407–420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. You, S. I. Savitz, J. Yang et al., “Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 9, pp. 1564–1573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C.-T. Tu, Q.-Y. Yao, B.-L. Xu, and S.-C. Zhang, “Curcumin protects against concanavalin A-induced hapetitis in mice through inhibiting the cytoplasmic translocation and expression of high mobility group box 1,” Inflammation, vol. 36, no. 1, pp. 206–215, 2012. View at Publisher · View at Google Scholar
  30. D. E. Christofferson and J. Yuan, “Necroptosis as an alternative form of programmed cell death,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 263–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Declercq, T. V. Berghe, and P. Vandenabeele, “RIP kinases at the crossroads of cell death and survival,” Cell, vol. 138, no. 2, pp. 229–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Y. Lim, S. M. Davidson, M. M. Mocanu, D. M. Yellon, and C. C. T. Smith, “The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore,” Cardiovascular Drugs and Therapy, vol. 21, no. 6, pp. 467–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. F. J. Northington, R. Chavez-Valdez, E. M. Graham, S. Razdan, E. B. Gauda, and L. J. Martin, “Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 178–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C.-P. Chang, M.-C. Yang, H.-S. Liu, Y.-S. Lin, and H.-Y. Lei, “Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model,” Hepatology, vol. 45, no. 2, pp. 286–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Sharon and H. Lis, “Lectins as cell recognition molecules,” Science, vol. 246, no. 4927, pp. 227–234, 1989. View at Google Scholar · View at Scopus
  36. A. Engering, T. B. H. Geijtenbeek, and Y. Van Kooyk, “Immune escape through C-type lectins on dendritic cells,” Trends in Immunology, vol. 23, no. 10, pp. 480–485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. E. G. De Mejia, T. Bradford, and C. Hasler, “The anticarcinogenic potential of soybean lectin and lunasin,” Nutrition Reviews, vol. 61, no. 7, pp. 239–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Holler, R. Zaru, O. Micheau et al., “Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule,” Nature Immunology, vol. 1, no. 6, pp. 489–495, 2000. View at Google Scholar · View at Scopus
  39. S. He, L. Wang, L. Miao et al., “Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α,” Cell, vol. 137, no. 6, pp. 1100–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D.-W. Zhang, J. Shao, J. Lin et al., “RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis,” Science, vol. 325, no. 5938, pp. 332–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J.-S. Kim, T. Nitta, D. Mohuczy et al., “Impaired autophagy: a mechanism of mitochondrial dysfunction in anoxic rat hepatocytes,” Hepatology, vol. 47, no. 5, pp. 1725–1736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Wang, Y. Ma, Z. Li et al., “The role of AKT1 and autophagy in the protective effect of hydrogen sulphide against hepatic ischemia/reperfusion injury in mice,” Autophagy, vol. 8, no. 6, pp. 954–962, 2012. View at Publisher · View at Google Scholar
  43. J. Cardinal, P. Pan, R. Dhupar et al., “Cisplatin prevents high mobility group box 1 release and is protective in a murine model of hepatic ischemia/reperfusion injury,” Hepatology, vol. 50, no. 2, pp. 565–574, 2009. View at Publisher · View at Google Scholar · View at Scopus