Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 714653, 13 pages
http://dx.doi.org/10.1155/2013/714653
Review Article

The Role of Oxidized Low-Density Lipoproteins in Atherosclerosis: The Myths and the Facts

Department of Medicine (DIMED), Internal Medicine 4, University of Padova, Via Giustiniani 2, 35128 Padova, Italy

Received 10 June 2013; Accepted 28 August 2013

Academic Editor: Ishak Tekin

Copyright © 2013 Giuseppe Maiolino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and challenges in translating the biology of atherosclerosis,” Nature, vol. 473, no. 7347, pp. 317–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. W. Majesky, “Developmental basis of vascular smooth muscle diversity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1248–1258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Gimbrone Jr., J. N. Topper, T. Nagel, K. R. Anderson, and G. Garcia-Cardeña, “Endothelial dysfunction, hemodynamic forces, and atherogenesis,” Annals of the New York Academy of Sciences, vol. 902, pp. 230–240, 2000. View at Google Scholar · View at Scopus
  4. I. Tabas, K. J. Williams, and J. Borén, “Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications,” Circulation, vol. 116, no. 16, pp. 1832–1844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Skålén, M. Gustafsson, E. Knutsen Rydberg et al., “Subendothelial retention of atherogenic lipoproteins in early atherosclerosis,” Nature, vol. 417, no. 6890, pp. 750–754, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Navab, J. A. Berliner, A. D. Watson et al., “The Yin and Yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff memorial lecture,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 7, pp. 831–842, 1996. View at Google Scholar · View at Scopus
  7. J. A. Berliner, M. C. Territo, A. Sevanian et al., “Minimally modified low density lipoprotein stimulates monocyte endothelial interactions,” Journal of Clinical Investigation, vol. 85, no. 4, pp. 1260–1266, 1990. View at Google Scholar · View at Scopus
  8. S.-H. Choi, R. Harkewicz, J. H. Lee et al., “Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake,” Circulation Research, vol. 104, no. 12, pp. 1355–1363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. I. Miller, S. Viriyakosol, D. S. Worrall, A. Boullier, S. Butler, and J. L. Witztum, “Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 6, pp. 1213–1219, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. S. Bae, J. H. Lee, S. H. Choi et al., “Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2,” Circulation Research, vol. 104, no. 2, pp. 210–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Parhami, Z. T. Fang, A. M. Fogelman, A. Andalibi, M. C. Territo, and J. A. Berliner, “Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate,” Journal of Clinical Investigation, vol. 92, no. 1, pp. 471–478, 1993. View at Google Scholar · View at Scopus
  12. T. Henriksen, E. M. Mahoney, and D. Steinberg, “Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 10 I, pp. 6499–6503, 1981. View at Google Scholar · View at Scopus
  13. I. Tabas, “Macrophage death and defective inflammation resolution in atherosclerosis,” Nature Reviews Immunology, vol. 10, no. 1, pp. 36–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Ambrose, M. A. Tannenbaum, D. Alexopoulos et al., “Angiographic progression of coronary artery disease and the development of myocardial infarction,” Journal of the American College of Cardiology, vol. 12, no. 1, pp. 56–62, 1988. View at Google Scholar · View at Scopus
  15. W. C. Little, M. Constantinescu, R. J. Applegate et al., “Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?” Circulation, vol. 78, no. 5 I, pp. 1157–1166, 1988. View at Google Scholar · View at Scopus
  16. R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 5, pp. 1262–1275, 2000. View at Google Scholar · View at Scopus
  17. G. W. Stone, A. Maehara, A. J. Lansky et al., “A prospective natural-history study of coronary atherosclerosis,” New England Journal of Medicine, vol. 364, no. 3, pp. 226–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Libby, “Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis,” Journal of Lipid Research, vol. 50, pp. S352–S357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989. View at Google Scholar · View at Scopus
  20. U. P. Steinbrecher, S. Parthasarathy, and D. S. Leake, “Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12 I, pp. 3883–3887, 1984. View at Google Scholar · View at Scopus
  21. T. Henriksen, E. M. Mahoney, and D. Steinberg, “Enhanced macrophage degradation of biologically modified low density lipoprotein,” Arteriosclerosis, vol. 3, no. 2, pp. 149–159, 1983. View at Google Scholar · View at Scopus
  22. J. W. Heinecke, H. Rosen, and A. Chait, “Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture,” Journal of Clinical Investigation, vol. 74, no. 5, pp. 1890–1894, 1984. View at Google Scholar · View at Scopus
  23. H. S. Kruth, N. L. Jones, W. Huang et al., “Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein,” Journal of Biological Chemistry, vol. 280, no. 3, pp. 2352–2360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. K. Glass and J. L. Witztum, “Atherosclerosis: the road ahead,” Cell, vol. 104, no. 4, pp. 503–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Cyrus, J. L. Witztum, D. J. Rader et al., “Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice,” Journal of Clinical Investigation, vol. 103, no. 11, pp. 1597–1604, 1999. View at Google Scholar · View at Scopus
  26. S. Yla-Herttuala, M. E. Rosenfeld, S. Parthasarathy et al., “Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 18, pp. 6959–6963, 1990. View at Google Scholar · View at Scopus
  27. S. M. Rankin, S. Parthasarathy, and D. Steinberg, “Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages,” Journal of Lipid Research, vol. 32, no. 3, pp. 449–456, 1991. View at Google Scholar · View at Scopus
  28. S. M. Sendobry, J. A. Cornicelli, K. Welch et al., “Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties,” British Journal of Pharmacology, vol. 120, no. 7, pp. 1199–1206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. T. M. A. Bocan, W. S. Rosebury, S. B. Mueller et al., “A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit,” Atherosclerosis, vol. 136, pp. 203–216, 1998. View at Google Scholar
  30. A. Daugherty, J. L. Dunn, D. L. Rateri, and J. W. Heinecke, “Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 437–444, 1994. View at Google Scholar · View at Scopus
  31. E. A. Podrez, M. Febbraio, N. Sheibani et al., “Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species,” Journal of Clinical Investigation, vol. 105, pp. 1095–1108, 2000. View at Google Scholar
  32. Z. Wang, S. J. Nicholls, E. R. Rodriguez et al., “Protein carbamylation links inflammation, smoking, uremia and atherogenesis,” Nature Medicine, vol. 13, no. 10, pp. 1176–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, “Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 1, pp. 333–337, 1979. View at Google Scholar · View at Scopus
  34. M. T. Quinn, S. Parthasarathy, and D. Steinberg, “Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 8, pp. 2805–2809, 1988. View at Google Scholar · View at Scopus
  35. J. Frostegard, A. Haegerstrand, M. Gidlund, and J. Nilsson, “Biologically modified LDL increases the adhesive properties of endothelial cells,” Atherosclerosis, vol. 90, no. 2-3, pp. 119–126, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Cominacini, U. Garbin, A. F. Pasini et al., “Antioxidants inhibit the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells,” Free Radical Biology and Medicine, vol. 22, no. 1-2, pp. 117–127, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Yui, T. Sasaki, A. Miyazaki, S. Horiuchi, and M. Yamazaki, “Induction of murine macrophage growth by modified LDLs,” Arteriosclerosis and Thrombosis, vol. 13, no. 3, pp. 331–337, 1993. View at Google Scholar · View at Scopus
  38. M. T. Quinn, S. Parthasarathy, L. G. Fong, and D. Steinberg, “Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 9, pp. 2995–2998, 1987. View at Google Scholar · View at Scopus
  39. A. Stiko-Rahm, A. Hultgardh-Nilsson, J. Regnstrom, A. Hamsten, and J. Nilsson, “Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells,” Arteriosclerosis and Thrombosis, vol. 12, no. 9, pp. 1099–1109, 1992. View at Google Scholar · View at Scopus
  40. M. Kohno, K. Yokokawa, K. Yasunari et al., “Induction by lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration,” Circulation, vol. 98, no. 4, pp. 353–359, 1998. View at Google Scholar · View at Scopus
  41. J. G. Kim, W. R. Taylor, and S. Parthasarathy, “Demonstration of the presence of lipid peroxide-modified proteins in human atherosclerotic lesions using a novel lipid peroxide-modified anti-peptide antibody,” Atherosclerosis, vol. 143, no. 2, pp. 335–340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Lindner, D. A. Lappi, A. Baird, R. A. Majack, and M. A. Reidy, “Role of basic fibroblast growth factor in vascular lesion formation,” Circulation Research, vol. 68, no. 1, pp. 106–113, 1991. View at Google Scholar · View at Scopus
  43. S. Jimi, K. Saku, N. Uesugi, N. Sakata, and S. Takebayashi, “Oxidized low density lipoprotein stimulates collagen production in cultured arterial smooth muscle cells,” Atherosclerosis, vol. 116, no. 1, pp. 15–26, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. T. B. Rajavashisth, J. K. Liao, Z. S. Galis et al., “Inflammatory cytokines and oxidized low density lipoproteins increase endothelial cell expression of membrane type 1-matrix metalloproteinase,” Journal of Biological Chemistry, vol. 274, no. 17, pp. 11924–11929, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. X.-P. Xu, S. R. Meisel, J. M. Ong et al., “Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages,” Circulation, vol. 99, no. 8, pp. 993–998, 1999. View at Google Scholar · View at Scopus
  46. A. Loidl, R. Claus, E. Ingolic, H.-P. Deigner, and A. Hermetter, “Role of ceramide in activation of stress-associated MAP kinases by minimally modified LDL in vascular smooth muscle cells,” Biochimica et Biophysica Acta, vol. 1690, no. 2, pp. 150–158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. C. J. Schwartz, A. J. Valente, E. A. Sprague, J. L. Kelley, and R. M. Nerem, “The pathogenesis of atherosclerosis: an overview,” Clinical Cardiology, vol. 14, no. 2, pp. 1–16, 1991. View at Google Scholar · View at Scopus
  48. M. K. Cathcart, D. W. Morel, and G. M. Chisolm III, “Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic,” Journal of Leukocyte Biology, vol. 38, no. 2, pp. 341–350, 1985. View at Google Scholar · View at Scopus
  49. M. Sata and K. Walsh, “Oxidized LDL activates Fas-mediated endothelial cell apoptosis,” Journal of Clinical Investigation, vol. 102, no. 9, pp. 1682–1689, 1998. View at Google Scholar · View at Scopus
  50. S. J. Hardwick, L. Hegyi, K. Clare et al., “Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein,” Journal of Pathology, vol. 179, pp. 294–302, 1996. View at Google Scholar
  51. E. Thorin, C. A. Hamilton, M. H. Dominiczak, and J. L. Reid, “Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release,” Arteriosclerosis and Thrombosis, vol. 14, no. 3, pp. 453–459, 1994. View at Google Scholar · View at Scopus
  52. L.-X. Li, J.-X. Chen, D.-F. Liao, and L. Yu, “Probucol inhibits oxidized-low density lipoprotein-induced adhesion of monocytes to endothelial cells by reducing P-selectin synthesis in vitro,” Endothelium, vol. 6, no. 1, pp. 1–8, 1998. View at Google Scholar · View at Scopus
  53. D. A. Armstrong, “Oxidized LDL, ceroid, and prostaglandin metabolism in human atherosclerosis,” Medical Hypotheses, vol. 38, no. 3, pp. 244–248, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Kugiyama, T. Sakamoto, I. Misumi et al., “Transferable lipids in oxidized low-density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells,” Circulation Research, vol. 73, no. 2, pp. 335–343, 1993. View at Google Scholar · View at Scopus
  55. M. Gräfe, W. Auch-Schwelk, H. Hertel et al., “Human cardiac microvascular and macrovascular endothelial cells respond differently to oxidatively modified LDL,” Atherosclerosis, vol. 137, no. 1, pp. 87–95, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. B. A. Allison, L. Nilsson, F. Karpe, A. Hamsten, and P. Eriksson, “Effects of native, triglyceride-enriched, and oxidatively modified LDL on plasminogen activator inhibitor-1 expression in human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 5, pp. 1354–1360, 1999. View at Google Scholar · View at Scopus
  57. J. K. Liao, W. S. S. Wee Soo Shin, W. Y. L. Wen Yee Lee, and S. L. Clark, “Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase,” Journal of Biological Chemistry, vol. 270, no. 1, pp. 319–324, 1995. View at Publisher · View at Google Scholar · View at Scopus
  58. C. M. Boulanger, F. C. Tanner, M.-L. Bea, A. W. A. Hahn, A. Werner, and T. F. Luscher, “Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium,” Circulation Research, vol. 70, no. 6, pp. 1191–1197, 1992. View at Google Scholar · View at Scopus
  59. D. Harats, A. Shaish, J. George et al., “Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 9, pp. 2100–2105, 2000. View at Google Scholar · View at Scopus
  60. J. Shen, E. Herderick, J. F. Cornhill et al., “Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development,” Journal of Clinical Investigation, vol. 98, no. 10, pp. 2201–2208, 1996. View at Google Scholar · View at Scopus
  61. T. Cyrus, D. Praticò, L. Zhao et al., “Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice,” Circulation, vol. 103, no. 18, pp. 2277–2282, 2001. View at Google Scholar · View at Scopus
  62. J. George, A. Afek, A. Shaish et al., “12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice,” Circulation, vol. 104, no. 14, pp. 1646–1650, 2001. View at Google Scholar · View at Scopus
  63. L. Zhao, C. A. Cuff, E. Moss et al., “Selective interleukin-12 synthesis defect in 12/15-lipoxygenase-deficient macrophages associated with reduced atherosclerosis in a mouse model of familial hypercholesterolemia,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 35350–35356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Huo, “Critical role of macrophage 12/15-lipoxygenase for atherosclerosis in apolipoprotein E-deficient mice,” Circulation, vol. 110, pp. 2024–2031, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. A. J. Merched, K. Ko, K. H. Gotlinger, C. N. Serhan, and L. Chan, “Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators,” FASEB Journal, vol. 22, no. 10, pp. 3595–3606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. V. V. Kunjathoor, M. Febbraio, E. A. Podrez et al., “Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49982–49988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Febbraio, E. A. Podrez, J. D. Smith et al., “Targeted disruption of the class B, scavenger receptor CD36 protects against atherosclerotic lesion development in mice,” Journal of Clinical Investigation, vol. 105, no. 8, pp. 1049–1056, 2000. View at Google Scholar · View at Scopus
  68. H. Suzuki, Y. Kurihara, M. Takeya et al., “A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection,” Nature, vol. 386, no. 6622, pp. 292–296, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. K. J. Moore, V. V. Kunjathoor, S. L. Koehn et al., “Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2192–2201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Witztum, “You are right too!,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2072–2075, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. J. L. Witztum and D. Steinberg, “The oxidative modification hypothesis of atherosclerosis: does it hold for humans?” Trends in Cardiovascular Medicine, vol. 11, no. 3-4, pp. 93–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Praticò, R. K. Tangirala, D. J. Rader, J. Rokach, and G. A. Fitzgerald, “Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice,” Nature Medicine, vol. 4, no. 10, pp. 1189–1192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. A. T. Erkkilä, O. Närvänen, S. Lehto, M. I. J. Uusitupa, and S. Ylä-Herttuala, “Autoantibodies against oxidized low-density lipoprotein and cardiolipin in patients with coronary heart disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 1, pp. 204–209, 2000. View at Google Scholar · View at Scopus
  74. T. Inoue, T. Uchida, H. Kamishirado, K. Takayanagi, T. Hayashi, and S. Morooka, “Clinical significance of antibody against oxidized low density lipoprotein in patients with atherosclerotic coronary artery disease,” Journal of the American College of Cardiology, vol. 37, no. 3, pp. 775–779, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Tsimikas, “Measures of oxidative stress,” Clinics in Laboratory Medicine, vol. 26, no. 3, pp. 571–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. N. A. Strobel, R. G. Fassett, S. A. Marsh, and J. S. Coombes, “Oxidative stress biomarkers as predictors of cardiovascular disease,” International Journal of Cardiology, vol. 147, no. 2, pp. 191–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Nishi, H. Itabe, M. Uno et al., “Oxidized LDL in carotid plaques and plasma associates with plaque instability,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 10, pp. 1649–1654, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Tsimikas, E. S. Brilakis, E. R. Miller et al., “Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease,” New England Journal of Medicine, vol. 353, no. 1, pp. 46–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. G. P. Rossi, M. Cesari, R. De Toni et al., “Antibodies to oxidized low-density lipoproteins and angiographically assessed coronary artery disease in white patients,” Circulation, vol. 108, no. 20, pp. 2467–2472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Tsimikas, E. S. Brilakis, R. J. Lennon et al., “Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events,” Journal of Lipid Research, vol. 48, no. 2, pp. 425–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Maiolino, L. Pedon, M. Cesari et al., “Antibodies to malondialdehyde oxidized low-density lipoproteins predict long term cardiovascular mortality in high risk patients,” International Journal of Cardiology, 2013. View at Publisher · View at Google Scholar
  82. B. Röhrig, J.-B. Du Prel, D. Wachtlin, and M. Blettner, “Types of study in medical research—part 3 of a series on evaluation of scientific publications,” Deutsches Arzteblatt, vol. 106, no. 15, pp. 262–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Tsutsui, T. Tsutamoto, A. Wada et al., “Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure,” Journal of the American College of Cardiology, vol. 39, no. 6, pp. 957–962, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Shoji, M. Fukumoto, E. Kimoto et al., “Antibody to oxidized low-density lipoprotein and cardiovascular mortality in end-stage renal disease,” Kidney International, vol. 62, no. 6, pp. 2230–2237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Bayés, M. Cruz Pastor, J. Bonal et al., “Homocysteine, C-reactive protein, lipid peroxidation and mortality in haemodialysis patients,” Nephrology Dialysis Transplantation, vol. 18, no. 1, pp. 106–112, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Bayés, M. C. Pastor, J. Bonal, A. Foraster, and R. Romero, “Oxidative stress, inflammation and cardiovascular mortality in haemodialysis—role of seniority and intravenous ferrotherapy: analysis at 4 years of follow-up,” Nephrology Dialysis Transplantation, vol. 21, no. 4, pp. 984–990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Shimada, H. Mokuno, E. Matsunaga et al., “Circulating oxidized low-density lipoprotein is an independent predictor for cardiac event in patients with coronary artery disease,” Atherosclerosis, vol. 174, no. 2, pp. 343–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Wallenfeldt, B. Fagerberg, J. Wikstrand, and J. Hulthe, “Oxidized low-density lipoprotein in plasma is a prognostic marker of subclinical atherosclerosis development in clinically healthy men,” Journal of Internal Medicine, vol. 256, no. 5, pp. 413–420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Naruko, M. Ueda, S. Ehara et al., “Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 4, pp. 877–883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Tsimikas, S. Kiechl, J. Willeit et al., “Oxidized phospholipids predict the presence and progression of carotid and femoral atherosclerosis and symptomatic cardiovascular disease: five-year prospective results from the bruneck study,” Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2219–2228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Johnston, T. Jernberg, B. Lagerqvist, A. Siegbahn, and L. Wallentin, “Oxidized low-density lipoprotein as a predictor of outcome in patients with unstable coronary artery disease,” International Journal of Cardiology, vol. 113, no. 2, pp. 167–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Kiechl, J. Willeit, M. Mayr et al., “Oxidized phospholipids, lipoprotein(a), lipoprotein-associated phospholipase A2 Activity, and 10-year cardiovascular outcomes: prospective results from the bruneck study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 8, pp. 1788–1795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. F. Lopes-Virella, K. J. Hunt, N. L. Baker et al., “The levels of MDA-LDL in circulating immune complexes predict myocardial infarction in the VADT study,” Atherosclerosis, vol. 224, pp. 526–531, 2012. View at Google Scholar
  94. S. Tsimikas, P. Willeit, J. Willeit et al., “Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events,” Journal of the American College of Cardiology, vol. 60, pp. 2218–2229, 2012. View at Google Scholar
  95. P. Holvoet, S. B. Kritchevsky, R. P. Tracy et al., “The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort,” Diabetes, vol. 53, no. 4, pp. 1068–1073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. M. I. J. Uusitupa, L. Niskanen, J. Luoma et al., “Autoantibodies against oxidized LDL do not predict atherosclerotic vascular disease in non-insulin-dependent diabetes mellitus,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 10, pp. 1236–1242, 1996. View at Google Scholar · View at Scopus
  97. A. T. Erkkilä, O. Närvänen, S. Lehto, M. I. J. Uusitupa, and S. Ylä-Herttuala, “Antibodies against oxidized LDL and cardiolipin and mortality in patients with coronary heart disease,” Atherosclerosis, vol. 183, no. 1, pp. 157–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Braun, G. Ndrepepa, N. Von Beckerath et al., “Lack of association between circulating levels of plasma oxidized low-density lipoproteins and clinical outcome after coronary stenting,” American Heart Journal, vol. 150, no. 3, pp. 550–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. P. W. F. Wilson, O. Ben-Yehuda, J. McNamara, J. Massaro, J. Witztum, and P. D. Reaven, “Autoantibodies to oxidized LDL and cardiovascular risk. The Framingham Offspring Study,” Atherosclerosis, vol. 189, no. 2, pp. 364–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Mayr, S. Kiechl, S. Tsimikas et al., “Oxidized low-density lipoprotein autoantibodies, chronic infections, and carotid atherosclerosis in a population-based study,” Journal of the American College of Cardiology, vol. 47, no. 12, pp. 2436–2443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. K. Lee, D. H. Lee, J. K. Kim et al., “Lysophosphatidylcholine, oxidized low-density lipoprotein and cardiovascular disease in korean hemodialysis patients: analysis at 5 years of follow-up,” Journal of Korean Medical Science, vol. 28, pp. 268–273, 2013. View at Google Scholar
  102. J. P. T. Higgins and S. Green, Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0, The Cochrane Collaboration, 2011.
  103. D. A. Grimes and K. F. Schulz, “Bias and causal associations in observational research,” The Lancet, vol. 359, no. 9302, pp. 248–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. P. A. Rochon, J. H. Gurwitz, K. Sykora et al., “Reader's guide to critical appraisal of cohort studies—1. Role and design,” British Medical Journal, vol. 330, no. 7496, pp. 895–897, 2005. View at Google Scholar · View at Scopus
  105. J. George, D. Harats, E. Bakshi et al., “Anti-oxidized low density lipoprotein antibody determination as a predictor of restenosis following percutaneous transluminal coronary angioplasty,” Immunology Letters, vol. 68, no. 2-3, pp. 263–266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. N. G. Stephens, A. Parsons, P. M. Schofield et al., “Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS),” The Lancet, vol. 347, no. 9004, pp. 781–786, 1996. View at Publisher · View at Google Scholar · View at Scopus
  107. I.-M. Lee, N. R. Cook, J. M. Gaziano et al., “Vitamin E in the primary prevention of cardiovascular disease and cancer. The women's health study: a randomized controlled trial,” Journal of the American Medical Association, vol. 294, no. 1, pp. 56–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Boaz, S. Smetana, T. Weinstein et al., “Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial,” The Lancet, vol. 356, no. 9237, pp. 1213–1218, 2000. View at Google Scholar · View at Scopus
  109. M. Tepel, M. Van der Giet, M. Statz, J. Jankowski, and W. Zidek, “The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial,” Circulation, vol. 107, no. 7, pp. 992–995, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. U. Milman, S. Blum, C. Shapira et al., “Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 341–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Virtamo, J. M. Rapola, S. Ripatti et al., “Effect of vitamin E and beta carotene on the incidence of primary nonfatal myocardial infarction and fatal coronary heart disease,” Archives of Internal Medicine, vol. 158, no. 6, pp. 668–675, 1998. View at Publisher · View at Google Scholar · View at Scopus
  112. J. M. Rapola, J. Virtamo, S. Ripatti et al., “Randomised trial of α-tocopherol and β-carotene supplements on incidence of major coronary events in men with previous myocardial infarction,” The Lancet, vol. 349, no. 9067, pp. 1715–1720, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. B. G. Brown, X.-Q. Zhao, A. Chait et al., “Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease,” New England Journal of Medicine, vol. 345, no. 22, pp. 1583–1592, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. H. D. Sesso, J. E. Buring, W. G. Christen et al., “Vitamins E and C in the prevention of cardiovascular disease in men: the physicians' health study II randomized controlled trial,” Journal of the American Medical Association, vol. 300, no. 18, pp. 2123–2133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. N. R. Cook, C. M. Albert, J. M. Gaziano et al., “A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the women's antioxidant cardiovascular study,” Archives of Internal Medicine, vol. 167, no. 15, pp. 1610–1618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. G. de Gaetano and Collaborative Group of the Primary Prevention Project, “Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. collaborative group of the primary prevention project,” The Lancet, vol. 357, pp. 89–95, 2001. View at Google Scholar
  117. GISSI-Prevenzione Investigators, “Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-prevenzione trial. gruppo italiano per lo studio della sopravvivenza nell'infarto miocardico,” The Lancet, vol. 354, pp. 447–455, 1999. View at Google Scholar
  118. E. R. Greenberg, J. A. Baron, M. R. Karagas et al., “Mortality associated with low plasma concentration of beta carotene and the effect of oral supplementation,” Journal of the American Medical Association, vol. 275, no. 9, pp. 699–703, 1996. View at Publisher · View at Google Scholar · View at Scopus
  119. C. H. Hennekens, J. E. Buring, J. E. Manson et al., “Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease,” New England Journal of Medicine, vol. 334, no. 18, pp. 1145–1149, 1996. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Hercberg, P. Galan, P. Preziosi et al., “The SU.VI.MAX study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals,” Archives of Internal Medicine, vol. 164, no. 21, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. R. Collins, J. Armitage, S. Parish, P. Sleight, and R. Peto, “MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20 536 high-risk individuals: a randomised placebo-controlled trial,” The Lancet, vol. 360, no. 9326, pp. 23–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Lonn, “Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial,” Journal of the American Medical Association, vol. 293, no. 11, pp. 1338–1347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. S. D. Mark, W. Wang, J. F. Fraumeni Jr. et al., “Lowered risks of hypertension and cerebrovascular disease after vitamin/mineral supplementation: the Linxian nutrition intervention trial,” American Journal of Epidemiology, vol. 143, no. 7, pp. 658–664, 1996. View at Google Scholar · View at Scopus
  124. G. S. Omenn, G. E. Goodman, M. D. Thornquist et al., “Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease,” New England Journal of Medicine, vol. 334, no. 18, pp. 1150–1155, 1996. View at Publisher · View at Google Scholar · View at Scopus
  125. D. D. Waters, E. L. Alderman, J. Hsia et al., “Effects of hormone replacement therapy and antioxidant vitamin supplements on coronary atherosclerosis in postmenopausal women: a randomized controlled trial,” Journal of the American Medical Association, vol. 288, no. 19, pp. 2432–2440, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Yusuf, G. Dagenais, J. Pogue, J. Bosch, and P. Sleight, “Vitamin E supplementation and cardiovascular events in high-risk patients. the heart outcomes prevention evaluation study investigators,” New England Journal of Medicine, vol. 342, pp. 154–160, 2000. View at Google Scholar
  127. Z. Ye and H. Song, “Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 15, no. 1, pp. 26–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. D. P. Vivekananthan, M. S. Penn, S. K. Sapp, A. Hsu, and E. J. Topol, “Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials,” The Lancet, vol. 361, pp. 2017–2023, 2004. View at Google Scholar
  129. S. R. Steinhubl, “Why have antioxidants failed in clinical trials?” American Journal of Cardiology, vol. 101, no. 10, pp. S14–S19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. O. Ziouzenkova, L. Asatryan, C. Tetta, M. L. Wratten, J. Hwang, and A. Sevanian, “Oxidative stress during ex vivo hemodialysis of blood is decreased by a novel hemolipodialysis procedure utilizing antioxidants,” Free Radical Biology and Medicine, vol. 33, no. 2, pp. 248–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Sevanian and L. Asatryan, “LDL modification during hemodialysis markers for oxidative stress,” Contributions to Nephrology, vol. 137, pp. 386–395, 2002. View at Google Scholar · View at Scopus
  132. L. A. Calò, A. Naso, E. Pagnin et al., “Vitamin E-coated dialyzers reduce oxidative stress related proteins and markers in hemodialysis—a molecular biological approach,” Clinical Nephrology, vol. 62, no. 5, pp. 355–361, 2004. View at Google Scholar · View at Scopus
  133. L. A. Calò, A. Naso, A. D'Angelo et al., “Molecular biology-based assessment of vitamin E-coated dialyzer effects on oxidative stress, inflammation, and vascular remodeling,” Artificial Organs, vol. 35, no. 2, pp. E33–E39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. A. P. Levy, “Application of pharmacogenomics in the prevention of diabetic cardiovascular disease: mechanistic basis and clinical evidence for utilization of the haptoglobin genotype in determining benefit from antioxidant therapy,” Pharmacology and Therapeutics, vol. 112, no. 2, pp. 501–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. S. Blum, U. Milman, C. Shapira et al., “Dual therapy with statins and antioxidants is superior to statins alone in decreasing the risk of cardiovascular disease in a subgroup of middle-aged individuals with both diabetes mellitus and the haptoglobin 2-2 genotype,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 3, pp. e18–e20, 2008. View at Publisher · View at Google Scholar · View at Scopus