Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013 (2013), Article ID 893521, 17 pages
http://dx.doi.org/10.1155/2013/893521
Review Article

Possible Involvement of TLRs and Hemichannels in Stress-Induced CNS Dysfunction via Mastocytes, and Glia Activation

1Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
2Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile

Received 22 February 2013; Revised 16 May 2013; Accepted 11 June 2013

Academic Editor: Dennis Daniel Taub

Copyright © 2013 Adam Aguirre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Carson, J. M. Doose, B. Melchior, C. D. Schmid, and C. C. Ploix, “CNS immune privilege: hiding in plain sight,” Immunological Reviews, vol. 213, no. 1, pp. 48–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. T. C. Theoharides, “Mast cells: the immune gate to the brain,” Life Sciences, vol. 46, no. 9, pp. 607–617, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. N. P. Turrin and S. Rivest, “Molecular and cellular immune mediators of neuroprotection,” Molecular Neurobiology, vol. 34, no. 3, pp. 221–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. C. Frank-Cannon, L. T. Alto, F. E. McAlpine, and M. G. Tansey, “Does neuroinflammation fan the flame in neurodegenerative diseases?” Molecular Neurodegeneration, vol. 4, no. 1, article 47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Rivest, “Regulation of innate immune responses in the brain,” Nature Reviews Immunology, vol. 9, no. 6, pp. 429–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. Block, L. Zecca, and J.-S. Hong, “Microglia-mediated neurotoxicity: uncovering the molecular mechanisms,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 57–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. T. C. Theoharides, J. Donelan, K. Kandere-Grzybowska, and A. Konstantinidou, “The role of mast cells in migraine pathophysiology,” Brain Research Reviews, vol. 49, no. 1, pp. 65–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Mallard, X. Wang, and H. Hagberg, “The role of Toll-like receptors in perinatal brain injury,” Clinics in Perinatology, vol. 36, no. 4, pp. 763–772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. McCurdy, T. J. Olynych, L. H. Maher, and J. S. Marshall, “Cutting edge: distinct toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells,” Journal of Immunology, vol. 170, no. 4, pp. 1625–1629, 2003. View at Google Scholar · View at Scopus
  10. M. G. Frank, B. M. Thompson, L. R. Watkins, and S. F. Maier, “Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses,” Brain, Behavior, and Immunity, vol. 26, no. 2, pp. 337–345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Okun, K. J. Griffioen, J. D. Lathia, S.-C. Tang, M. P. Mattson, and T. V. Arumugam, “Toll-like receptors in neurodegeneration,” Brain Research Reviews, vol. 59, no. 2, pp. 278–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Iribarren, Y. Zhou, J. Hu, Y. Le, and J. M. Wang, “Role of formyl peptide receptor-like 1 (FPRL1/FPR2) in mononuclear phagocyte responses in Alzheimer disease,” Immunologic Research, vol. 31, no. 3, pp. 165–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. S. Arroyo, J. A. Soria, E. A. Gaviglio, M. C. Rodriguez-Galan, and P. Iribarren, “Toll-like receptors are key players in neurodegeneration,” International Immunopharmacology, vol. 11, no. 10, pp. 1415–1421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. S. Brown, M. D. Begg, S. Gravenstein et al., “Serologic evidence of prenatal influenza in the etiology of schizophrenia,” Archives of General Psychiatry, vol. 61, no. 8, pp. 774–780, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. S. Brown, “Prenatal infection as a risk factor for schizophrenia,” Schizophrenia Bulletin, vol. 32, no. 2, pp. 200–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Meyer, M. Nyffeler, A. Engler et al., “The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology,” Journal of Neuroscience, vol. 26, no. 18, pp. 4752–4762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Meyer and J. Feldon, “To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models,” Neuropharmacology, vol. 62, no. 3, pp. 1308–1321, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Arrode-Brusés and J. L. Brusés, “Maternal immune activation by poly I:C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain,” Journal of Neuroinflammation, vol. 9, p. 83, 2012. View at Publisher · View at Google Scholar
  19. A. S. Brown, “Exposure to prenatal infection and risk of schizophrenia,” Frontiers in Psychiatry, vol. 2, p. 63, 2011. View at Publisher · View at Google Scholar
  20. S. Asadi and T. C. Theoharides, “Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin,” Journal of Neuroinflammation, p. 85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Liu, Y.-J. Gao, and R.-R. Ji, “Emerging role of Toll-like receptors in the control of pain and itch,” Neuroscience Bulletin, pp. 1–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Heil, H. Hemmi, H. Hochrein et al., “Species-specific recognition of single-stranded RNA via till-like receptor 7 and 8,” Science, vol. 303, no. 5663, pp. 1526–1529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Yarovinsky, D. Zhang, J. F. Andersen et al., “Immunology: TLR11 activation of dendritic cells by a protozoan profilin-like protein,” Science, vol. 308, no. 5728, pp. 1626–1629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Town, D. Jeng, L. Alexopoulou, J. Tan, and R. A. Flavell, “Microglia recognize double-stranded RNA via TLR3,” Journal of Immunology, vol. 176, no. 6, pp. 3804–3812, 2006. View at Google Scholar · View at Scopus
  26. V. Dimitriadou, M. Lambracht-Hall, J. Reichler, and T. C. Theoharides, “Histochemical and ultrastructural characteristics of rat brain perivascular mast cells stimulated with compound 48/80 and carbachol,” Neuroscience, vol. 39, no. 1, pp. 209–224, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. K. A. Manning, T. P. Pienkowski, and D. J. Uhlrich, “Histaminergic and non-histamine-immunoreactive mast cells within the cat lateral geniculate complex examined with light and electron microscopy,” Neuroscience, vol. 63, no. 1, pp. 191–206, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Michaloudi, C. Batzios, M. Chiotelli, and G. C. Papadopoulos, “Developmental changes of mast cell populations in the cerebral meninges of the rat,” Journal of Anatomy, vol. 211, no. 4, pp. 556–566, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Khalil, J. Ronda, M. Weintraub, K. Jain, R. Silver, and A.-J. Silverman, “Brain mast cell relationship to neurovasculature during development,” Brain Research, vol. 1171, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Marshall, “Mast-cell responses to pathogens,” Nature Reviews Immunology, vol. 4, no. 10, pp. 787–799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Galli, S. Nakae, and M. Tsai, “Mast cells in the development of adaptive immune responses,” Nature Immunology, vol. 6, no. 2, pp. 135–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. McCurdy, T.-J. Lin, and J. S. Marshall, “Toll-like receptor 4-mediated activation of murine mast cells,” Journal of Leukocyte Biology, vol. 70, no. 6, pp. 977–984, 2001. View at Google Scholar · View at Scopus
  33. V. Supajatura, H. Ushio, A. Nakao, K. Okumura, C. Ra, and H. Ogawa, “Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4,” Journal of Immunology, vol. 167, no. 4, pp. 2250–2256, 2001. View at Google Scholar · View at Scopus
  34. A. Masuda, Y. Yoshikai, K. Aiba, and T. Matsuguchi, “Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways,” Journal of Immunology, vol. 169, no. 7, pp. 3801–3810, 2002. View at Google Scholar · View at Scopus
  35. H. Matsushima, N. Yamada, H. Matsue, and S. Shimada, “TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells,” Journal of Immunology, vol. 173, no. 1, pp. 531–541, 2004. View at Google Scholar · View at Scopus
  36. S. Mrabet-Dahbi, M. Metz, A. Dudeck, T. Zuberbier, and M. Maurer, “Murine mast cells secrete a unique profile of cytokines and prostaglandins in response to distinct TLR2 ligands,” Experimental Dermatology, vol. 18, no. 5, pp. 437–444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Varadaradjalou, F. Féger, N. Thieblemont et al., “Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells,” European Journal of Immunology, vol. 33, no. 4, pp. 899–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Kulka, L. Alexopoulou, R. A. Flavell, and D. D. Metcalfe, “Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3,” Journal of Allergy and Clinical Immunology, vol. 114, no. 1, pp. 174–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Yoshioka, N. Fukuishi, S. Iriguchi et al., “Lipoteichoic acid downregulates FcεRI expression on human mast cells through Toll-like receptor 2,” Journal of Allergy and Clinical Immunology, vol. 120, no. 2, pp. 452–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Leal-Berumen, P. Conlon, and J. S. Marshall, “IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide,” Journal of Immunology, vol. 152, no. 11, pp. 5468–5476, 1994. View at Google Scholar · View at Scopus
  41. F.-G. Zhu and J. S. Marshall, “CpG-containing oligodeoxynucleotides induce TNF-α and IL-6 production but not degranulation from murine bone marrow-derived mast cells,” Journal of Leukocyte Biology, vol. 69, no. 2, pp. 253–262, 2001. View at Google Scholar · View at Scopus
  42. Z. Orinska, E. Bulanova, V. Budagian, M. Metz, M. Maurer, and S. Bulfone-Paus, “TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment,” Blood, vol. 106, no. 3, pp. 978–987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Heib, M. Becker, T. Warger et al., “Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice,” Blood, vol. 110, no. 3, pp. 946–953, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Kulka and D. D. Metcalfe, “TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin,” Molecular Immunology, vol. 43, no. 10, pp. 1579–1586, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Wierzbicki and E. Brzezińska-Blłaszczyk, “Diverse effects of bacterial cell wall components on mast cell degranulation, cysteinyl leukotriene generation and migration,” Microbiology and Immunology, vol. 53, no. 12, pp. 694–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. V. H. Secor, W. E. Secor, C.-A. Gutekunst, and M. A. Brown, “Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 813–821, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. B. A. Sayed, M. E. Walker, and M. A. Brown, “Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis,” Journal of Immunology, vol. 186, no. 6, pp. 3294–3298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Tunçel, E. Şener, C. Cerit et al., “Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson's disease model in rats: brain microdialysis, behavior, and microscopy,” Peptides, vol. 26, no. 5, pp. 827–836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. M. C. Graves, M. Fiala, L. A. V. Dinglasan et al., “Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and t cells,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 5, no. 4, pp. 213–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Fiala, M. Chattopadhay, A. La Cava et al., “IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients,” Journal of Neuroinflammation, vol. 7, article 76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. I. M. Kvetnoi, T. V. Kvetnaya, I. Y. Ryadnova, B. B. Fursov, J. Ernandes-Jago, and J. R. Blesa, “Expression of β-amyloid and tau-protein in mastocytes in Alzheimer's disease,” Arkhiv Patologii, vol. 65, no. 1, pp. 36–39, 2003. View at Google Scholar · View at Scopus
  52. A. Lozada, M. Maegele, H. Stark, E. M. A. Neugebauert, and P. Panula, “Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors,” Neuropathology and Applied Neurobiology, vol. 31, no. 2, pp. 150–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Strbian, M.-L. Karjalainen-Lindsberg, T. Tatlisumak, and P. J. Lindsberg, “Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 5, pp. 605–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Strbian, T. Tatlisumak, U. A. Ramadan, and P. J. Lindsberg, “Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 4, pp. 795–802, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Mokhtarian and D. E. Griffin, “The role of mast cells in virus-induced inflammation in the murine central nervous system,” Cellular Immunology, vol. 86, no. 2, pp. 491–500, 1984. View at Google Scholar · View at Scopus
  56. T. Brenner, D. Soffer, M. Shalit, and F. Levi-Schaffer, “Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides,” Journal of the Neurological Sciences, vol. 122, no. 2, pp. 210–213, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Johnson, P. A. Seeldrayers, and H. L. Weiner, “The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation,” Brain Research, vol. 444, no. 1, pp. 195–198, 1988. View at Google Scholar · View at Scopus
  58. I. Napoli and H. Neumann, “Microglial clearance function in health and disease,” Neuroscience, vol. 158, no. 3, pp. 1030–1038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Ribes, N. Adam, S. Ebert et al., “The viral TLR3 agonist poly(I:C) stimulates phagocytosis and intracellular killing of Escherichia coli by microglial cells,” Neuroscience Letters, vol. 482, no. 1, pp. 17–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. L. Venero, M. A. Burguillos, P. Brundin, and B. Joseph, “The executioners sing a new song: killer caspases activate microglia,” Cell Death and Differentiation, vol. 18, no. 11, pp. 1679–1691, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Kees, J. Lohr, J. Noack et al., “Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation,” Neuro-Oncology, vol. 14, no. 1, pp. 64–78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Wang, T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig, and R. A. Flavell, “Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis,” Nature Medicine, vol. 10, no. 12, pp. 1366–1373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. V. Supajatura, H. Ushio, A. Nakao et al., “Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity,” Journal of Clinical Investigation, vol. 109, no. 10, pp. 1351–1359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Kubo, N. Fukuishi, M. Yoshioka et al., “Bacterial components regulate the expression of Toll-like receptor 4 on human mast cells,” Inflammation Research, vol. 56, no. 2, pp. 70–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. I. Nigo, M. Yamashita, K. Hirahara et al., “Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2286–2291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Feuser, K.-P. Thon, S. C. Bischoff, and A. Lorentz, “Human intestinal mast cells are a potent source of multiple chemokines,” Cytokine, vol. 58, no. 2, pp. 178–185, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. S. D. Skaper, P. Giusti, and L. Facci, “Microglia and mast cells: two tracks on the road to neuroinflammation,” The FASEB Journal, vol. 26, pp. 3103–3117, 2012. View at Google Scholar
  68. J. J. Rozniecki, S. L. Hauser, M. Stein, R. Lincoln, and T. C. Theoharides, “Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients,” Annals of Neurology, vol. 37, no. 1, pp. 63–66, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. V. Malamud, A. Vaaknin, O. Abramsky et al., “Tryptase activates peripheral blood mononuclear cells causing the synthesis and release of TNF-α, IL-6 and IL-1β: possible relevance to multiple sclerosis,” Journal of Neuroimmunology, vol. 138, no. 1-2, pp. 115–122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. V. S. Ossovskaya and N. W. Bunnett, “Protease-activated receptors: contribution to physiology and disease,” Physiological Reviews, vol. 84, no. 2, pp. 579–621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Molino, E. S. Barnathan, R. Numerof et al., “Interactions of mast cell tryptase with thrombin receptors and PAR-2,” Journal of Biological Chemistry, vol. 272, no. 7, pp. 4043–4049, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Olejár, R. Matěj, M. Zadinová, and P. Poučková, “Proteinase-activated receptor-2 expression on cerebral neurones after radiation damage: immunohistochemical observation in Wistar rats,” International Journal of Tissue Reactions, vol. 24, no. 3, pp. 81–88, 2002. View at Google Scholar · View at Scopus
  73. T. Rohatgi, P. Henrich-Noack, F. Sedehizade et al., “Transient focal ischemia in rat brain differentially regulates mRNA expression of protease-activated receptors 1 to 4,” Journal of Neuroscience Research, vol. 75, no. 2, pp. 273–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Jin, A. J. Silverman, and S. J. Vannucci, “Mast cells are early responders after hypoxia-ischemia in immature rat brain,” Stroke, vol. 40, no. 9, pp. 3107–3112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Hagberg, D. Peebles, and C. Mallard, “Models of white matter injury: comparison of infectious, hypoxic-Ischemic, and excitotoxic insults,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 8, no. 1, pp. 30–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Pang, Z. Cai, and P. G. Rhodes, “Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide,” Developmental Brain Research, vol. 140, no. 2, pp. 205–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. J. M. Dean, X. Wang, A. M. Kaindl et al., “Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro,” Brain, Behavior, and Immunity, vol. 24, pp. 776–783, 2010. View at Publisher · View at Google Scholar
  78. S. Lehnard, C. Lachance, S. Patrizi et al., “The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS,” Journal of Neuroscience, vol. 22, no. 7, pp. 2478–2486, 2002. View at Google Scholar · View at Scopus
  79. C. Farina, F. Aloisi, and E. Meinl, “Astrocytes are active players in cerebral innate immunity,” Trends in Immunology, vol. 28, no. 3, pp. 138–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. P. A. Carpentier, W. S. Begolka, J. K. Olson, A. Elhofy, W. J. Karpus, and S. D. Miller, “Differential activation of astrocytes by innate and adaptive immune stimuli,” Glia, vol. 49, no. 3, pp. 360–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. P. O. Scumpia, K. M. Kelly, W. H. Reeves, and B. R. Stevens, “Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes,” Glia, vol. 52, no. 2, pp. 153–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Kim, E. Yang, J. Lee et al., “Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes,” Immunology, vol. 124, no. 4, pp. 480–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Bsibsi, C. Persoon-Deen, R. W. H. Verwer, S. Meeuwsen, R. Ravid, and J. M. Van Noort, “Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators,” Glia, vol. 53, no. 7, pp. 688–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. L. Hanke and T. Kielian, “Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential,” Clinical Science, vol. 121, no. 9, pp. 367–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. J. R. Caso, J. M. Pradillo, O. Hurtado, P. Lorenzo, M. A. Moro, and I. Lizasoain, “Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke,” Circulation, vol. 115, no. 12, pp. 1599–1608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. S.-C. Tang, T. V. Arumugam, X. Xu et al., “Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 34, pp. 13798–13803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. U. Kilic, E. Kilic, C. M. Matter, C. L. Bassetti, and D. M. Hermann, “TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration,” Neurobiology of Disease, vol. 31, no. 1, pp. 33–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. J. R. Cashman, S. Ghirmai, K. J. Abel, and M. Fiala, “Immune defects in Alzheimer's disease: new medications development,” BMC Neuroscience, vol. 9, no. 2, article S13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. S.-C. Tang, J. D. Lathia, P. K. Selvaraj et al., “Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid β-peptide and the membrane lipid peroxidation product 4-hydroxynonenal,” Experimental Neurology, vol. 213, no. 1, pp. 114–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Marta, “Toll-like receptors in multiple sclerosis mouse experimental models,” Annals of the New York Academy of Sciences, vol. 1173, pp. 458–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Gorina, M. Font-Nieves, L. Márquez-Kisinousky, T. Santalucia, and A. M. Planas, “Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways,” GLIA, vol. 59, no. 2, pp. 242–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. C. S. Jack, N. Arbour, J. Manusow et al., “TLR signaling tailors innate immune responses in human microglia and astrocytes,” Journal of Immunology, vol. 175, no. 7, pp. 4320–4330, 2005. View at Google Scholar · View at Scopus
  93. A. Krasowska-Zoladek, M. Banaszewska, M. Kraszpulski, and G. W. Konat, “Kinetics of inflammatory response of astrocytes induced by TLR3 and TLR4 ligation,” Journal of Neuroscience Research, vol. 85, no. 1, pp. 205–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Bsibsi, R. Ravid, D. Gveric, and J. M. Van Noort, “Broad expression of Toll-like receptors in the human central nervous system,” Journal of Neuropathology and Experimental Neurology, vol. 61, no. 11, pp. 1013–1021, 2002. View at Google Scholar · View at Scopus
  95. A. Setzu, J. D. Lathia, C. Zhao et al., “Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells,” Glia, vol. 54, no. 4, pp. 297–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. K. A. Kigerl, W. Lai, S. Rivest, R. P. Hart, A. R. Satoskar, and P. G. Popovich, “Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury,” Journal of Neurochemistry, vol. 102, no. 1, pp. 37–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Sharma, M.-T. Fischer, J. Bauer et al., “Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination,” Acta Neuropathologica, vol. 120, no. 2, pp. 223–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. D. L. Schonberg, P. G. Popovich, and D. M. McTigue, “Oligodendrocyte generation is differentially influenced by toll-like receptor (TLR) 2 and TLR4-mediated intraspinal macrophage activation,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 12, pp. 1124–1135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. I. Glezer, A. Lapointe, and S. Rivest, “Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries,” The FASEB Journal, vol. 20, no. 6, pp. 750–752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Bsibsi, A. Nomden, J. M. van Noort, and W. Baron, “Toll-like receptors 2 and 3 agonists differentially affect oligodendrocyte survival, differentiation, and myelin membrane formation,” Journal of Neuroscience Research, vol. 90, no. 2, pp. 388–398, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Lehnardt, L. Massillon, P. Follett et al., “Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8514–8519, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. P. A. Felts, A.-M. Woolston, H. B. Fernando et al., “Inflammation and primary demyelination induced by the intraspinal injection of lipopolysaccharide,” Brain, vol. 128, no. 7, pp. 1649–1666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Li, E. R. Ramenaden, J. Peng, H. Koito, J. J. Volpe, and P. A. Rosenberg, “Tumor necrosis factor α mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present,” Journal of Neuroscience, vol. 28, no. 20, pp. 5321–5330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Kim, A. J. Steelman, H. Koito, and J. Li, “Astrocytes promote TNF-mediated toxicity to oligodendrocyte precursors,” Journal of Neurochemistry, vol. 116, no. 1, pp. 53–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. A. J. Steelman and J. Li, “Poly(I:C) promotes TNFα/TNFR1-dependent oligodendrocyte death in mixed glial cultures,” Journal of Neuroinflammation, vol. 8, article 89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. E. M. Sternberg, “Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens,” Nature Reviews Immunology, vol. 6, no. 4, pp. 318–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. R. P. Gomariz, I. Gutiérrez-Cañas, A. Arranz et al., “Peptides targeting toll-like receptor signalling pathways for novel immune therapeutics,” Current Pharmaceutical Design, vol. 16, no. 9, pp. 1063–1080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Z. Ben-Sasson, S. Caucheteux, M. Crank, J. Hu-Li, and W. E. Paul, “IL-1 acts on T cells to enhance the magnitude of in vivo immune responses,” Cytokine, vol. 56, no. 1, pp. 122–125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. T.-D. Kanneganti, “Central roles of NLRs and inflammasomes in viral infection,” Nature Reviews Immunology, vol. 10, no. 10, pp. 688–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. O. Gross, C. J. Thomas, G. Guarda, and J. Tschopp, “The inflammasome: an integrated view,” Immunological Reviews, vol. 243, no. 1, pp. 136–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. V. Pétrilli, S. Papin, C. Dostert, A. Mayor, F. Martinon, and J. Tschopp, “Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration,” Cell Death and Differentiation, vol. 14, no. 9, pp. 1583–1589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Dostert, V. Pétrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J. Tschopp, “Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica,” Science, vol. 320, no. 5876, pp. 674–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. R. R. Craven, X. Gao, I. C. Allen et al., “Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells,” PLoS ONE, vol. 4, no. 10, Article ID e7446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Mariathasan, D. S. Weiss, K. Newton et al., “Cryopyrin activates the inflammasome in response to toxins and ATP,” Nature, vol. 440, no. 7081, pp. 228–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. F. S. Sutterwala, Y. Ogura, M. Szczepanik et al., “Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1,” Immunity, vol. 24, no. 3, pp. 317–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Pelegrin and A. Surprenant, “Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor,” The EMBO Journal, vol. 25, no. 21, pp. 5071–5082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Locovei, J. Wang, and G. Dahl, “Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium,” FEBS Letters, vol. 580, no. 1, pp. 239–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. T.-D. Kanneganti, M. Lamkanfi, Y.-G. Kim et al., “Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling,” Immunity, vol. 26, no. 4, pp. 433–443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. W. R. Silverman, J. P. de Rivero Vaccari, S. Locovei et al., “The pannexin 1 channel activates the inflammasome in neurons and astrocytes,” Journal of Biological Chemistry, vol. 284, no. 27, pp. 18143–18151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. J. C. Sáez, K. A. Schalper, M. A. Retamal, J. A. Orellana, K. F. Shoji, and M. V. L. Bennett, “Cell membrane permeabilization via connexin hemichannels in living and dying cells,” Experimental Cell Research, vol. 316, no. 15, pp. 2377–2389, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. M. V. L. Bennett, J. E. Contreras, F. F. Bukauskas, and J. C. Sáez, “New roles for astrocytes: gap junction hemichannels have something to communicate,” Trends in Neurosciences, vol. 26, no. 11, pp. 610–617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. J. C. Sáez, M. A. Retamal, D. Basilio, F. F. Bukauskas, and M. V. L. Bennett, “Connexin-based gap junction hemichannels: gating mechanisms,” Biochimica et Biophysica Acta, vol. 1711, no. 2, pp. 215–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Thornton, E. Pinteaux, R. M. Gibson, S. M. Allan, and N. J. Rothwell, “Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release,” Journal of Neurochemistry, vol. 98, no. 1, pp. 258–266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. J. A. Orellana, P. J. Sáez, K. F. Shoji et al., “Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration,” Antioxidants and Redox Signaling, vol. 11, no. 2, pp. 369–399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. J. A. Orellana, N. Froger, P. Ezan et al., “ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels,” Journal of Neurochemistry, vol. 118, no. 5, pp. 826–840, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. J. A. Orellana, K. F. Shoji, V. Abudara et al., “Amyloid β-induced death in neurons involves glial and neuronal hemichannels,” Journal of Neuroscience, vol. 31, no. 13, pp. 4962–4977, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Vliagoftis, A. M. Hutson, S. Mahmudi-Azer et al., “Mast cells express connexins on their cytoplasmic membrane,” Journal of Allergy and Clinical Immunology, vol. 103, no. 4, pp. 656–662, 1999. View at Publisher · View at Google Scholar · View at Scopus
  128. P. E. R. Tatham and M. Lindau, “ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells,” Journal of General Physiology, vol. 95, no. 3, pp. 459–476, 1990. View at Google Scholar · View at Scopus
  129. A. B. Parekh and J. W. Putney Jr., “Store-operated calcium channels,” Physiological Reviews, vol. 85, no. 2, pp. 757–810, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. E. D. Ponomarev, L. P. Shriver, K. Maresz, and B. N. Dittel, “Microglial cell activation and proliferation precedes the onset of CNS autoimmunity,” Journal of Neuroscience Research, vol. 81, no. 3, pp. 374–389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. E. D. Ponomarev, L. P. Shriver, and B. N. Dittel, “CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation,” Journal of Immunology, vol. 176, no. 3, pp. 1402–1410, 2006. View at Google Scholar · View at Scopus
  132. K. Chen, J. Huang, W. Gong, L. Zhang, P. Yu, and J. M. Wang, “CD40/CD40L dyad in the inflammatory and immune responses in the central nervous system,” Cellular & Molecular Immunology, vol. 3, no. 3, pp. 163–169, 2006. View at Google Scholar · View at Scopus
  133. M. B. Graeber and W. J. Streit, “Microglia: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 89–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. E. Polazzi and A. Contestabile, “Overactivation of LPS-stimulated microglial cells by co-cultured neurons or neuron-conditioned medium,” Journal of Neuroimmunology, vol. 172, no. 1-2, pp. 104–111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. M. V. Bennett, J. M. Garre, J. A. Orellana, F. F. Bukauskas, M. Nedergaard, and J. C. Saez, “Connexin and pannexin hemichannels in inflammatory responses of glia and neurons,” Brain Research, vol. 1487, pp. 3–15, 2012. View at Google Scholar
  136. E. A. Eugenín, D. Eckardt, M. Theis, K. Willecke, M. V. L. Bennett, and J. C. Sáez, “Microglia at brain stab wounds express connexin 43 and in vitro form functional gap junctions after treatment with interferon-γ and tumor necrosis factor-α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4190–4195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  137. R. Parenti, A. Campisi, A. Vanella, and F. Cicirata, “Immunocytochemical and RT-PCR analysis of connexin36 in cultures of mammalian glial cells,” Archives Italiennes de Biologie, vol. 140, no. 2, pp. 101–108, 2002. View at Google Scholar · View at Scopus
  138. K. Dobrenis, H.-Y. Chang, M. H. Pina-Benabou et al., “Human and mouse microglia express connexin36, and functional gap junctions are formed between rodent microglia and neurons,” Journal of Neuroscience Research, vol. 82, no. 3, pp. 306–315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Garg, M. M. Syed, and T. Kielian, “Staphylococcus aureus-derived peptidoglycan induces Cx43 expression and functional gap junction intercellular communication in microglia,” Journal of Neurochemistry, vol. 95, no. 2, pp. 475–483, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. A. D. Martinez, V. Hayrapetyan, A. P. Moreno, and E. C. Beyer, “Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation,” Circulation Research, vol. 90, no. 10, pp. 1100–1107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Giaume and K. D. McCarthy, “Control of gap-junctional communication in astrocytic networks,” Trends in Neurosciences, vol. 19, no. 8, pp. 319–325, 1996. View at Publisher · View at Google Scholar · View at Scopus
  142. E. Scemes and C. Giaume, “Astrocyte calcium waves: what they are and what they do,” Glia, vol. 54, no. 7, pp. 716–725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. M. L. Cotrina, J. H.-C. Lin, J. C. López-García, C. C. G. Naus, and M. Nedergaard, “ATP-mediated glia signaling,” Journal of Neuroscience, vol. 20, no. 8, pp. 2835–2844, 2000. View at Google Scholar · View at Scopus
  144. F. Calegari, S. Coco, E. Taverna et al., “A regulated secretory pathway in cultured hippocampal astrocytes,” Journal of Biological Chemistry, vol. 274, no. 32, pp. 22539–22547, 1999. View at Publisher · View at Google Scholar · View at Scopus
  145. C. Stout and A. Charles, “Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium,” Glia, vol. 43, no. 3, pp. 265–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  146. J. Kang, N. Kang, D. Lovatt et al., “Connexin 43 hemichannels are permeable to ATP,” Journal of Neuroscience, vol. 28, no. 18, pp. 4702–4711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. R. Iglesias, G. Dahl, F. Qiu, D. C. Spray, and E. Scemes, “Pannexin 1: the molecular substrate of astrocyte “hemichannels”,” Journal of Neuroscience, vol. 29, no. 21, pp. 7092–7097, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. V. Parpura, T. A. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija, and P. G. Haydon, “Glutamate-mediated astrocyte-neuron signalling,” Nature, vol. 369, no. 6483, pp. 744–747, 1994. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Albrecht and U. Rafalowska, “Enhanced potassium-stimulated γ-aminobutyric acid release by astrocytes derived from rats with early hepatogenic encephalopathy,” Journal of Neurochemistry, vol. 49, no. 1, pp. 9–11, 1987. View at Google Scholar · View at Scopus
  150. G. Queiroz, P. J. Gebicke-Haerter, A. Schobert, K. Starke, and I. Von Kügelgen, “Release of ATP from cultured rat astrocytes elicited by glutamate receptor activation,” Neuroscience, vol. 78, no. 4, pp. 1203–1208, 1997. View at Publisher · View at Google Scholar · View at Scopus
  151. J. Albrecht, M. Simmons, G. R. Dutton, and M. D. Norenberg, “Aluminium chloride stimulates the release of endogenous glutamate, taurine and adenosine from cultured rat cortical astrocytes,” Neuroscience Letters, vol. 127, no. 1, pp. 105–107, 1991. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Stehberg, R. Moraga-Amaro, C. Salazar et al., “Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala,” The FASEB Journal, vol. 26, pp. 3649–3657, 2012. View at Google Scholar
  153. J. I. Nagy, A.-V. Ionescu, B. D. Lynn, and J. E. Rash, “Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice,” Glia, vol. 44, no. 3, pp. 205–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  154. M. A. Retamal, N. Froger, N. Palacios-Prado et al., “Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia,” Journal of Neuroscience, vol. 27, no. 50, pp. 13781–13792, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. J. O. Davidson, C. R. Green, L. F. B. Nicholson et al., “Connexin hemichannel blockade improves outcomes in a model of fetal ischemia,” Annals of Neurology, vol. 71, no. 1, pp. 121–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. N. Karpuk, M. Burkovetskaya, T. Fritz, A. Angle, and T. Kielian, “Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity,” Journal of Neuroscience, vol. 31, no. 2, pp. 414–425, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. E. A. Eugenin, D. Basilio, J. C. Sáez et al., “The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system,” Journal of Neuroimmune Pharmacology, vol. 7, no. 3, pp. 499–518, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. J. A. Orellana, D. E. Hernández, P. Ezan et al., “Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels,” Glia, vol. 58, no. 3, pp. 329–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. M. Rovegno, P. A. Soto, J. C. Sáez, and R. von Bernhardi, “Biological mechanisms involved in the spread of traumatic brain damage,” Medicina Intensiva, vol. 36, no. 1, pp. 37–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  160. B. E. Grayson, P. R. Levasseur, S. M. Williams, M. S. Smith, D. L. Marks, and K. L. Grove, “Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet,” Endocrinology, vol. 151, no. 4, pp. 1622–1632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. N. Baumann and D. Pham-Dinh, “Biology of oligodendrocyte and myelin in the mammalian central nervous system,” Physiological Reviews, vol. 81, no. 2, pp. 871–927, 2001. View at Google Scholar · View at Scopus
  162. J. D. Dougherty, E. I. Fomchenko, A. A. Akuffo et al., “Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma,” Cancer Research, vol. 72, pp. 4856–4868, 2012. View at Google Scholar
  163. V. E. Miron, T. Kuhlmann, and J. P. Antel Jack P., “Cells of the oligodendroglial lineage, myelination, and remyelination,” Biochimica et Biophysica Acta, vol. 1812, no. 2, pp. 184–193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. L. M. Magnotti, D. A. Goodenough, and D. L. Paul, “Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality,” Glia, vol. 59, no. 7, pp. 1064–1074, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Nualart-Marti, C. Solsona, and R. D. Fields, “Gap junction communication in myelinating glia,” Biochimica et Biophysica Acta, vol. 1828, no. 1, pp. 69–78, 2013. View at Publisher · View at Google Scholar · View at Scopus
  166. A. Schousboe, N. Westergaard, U. Sonnewald et al., “Glutamate and glutamine metabolism and compartmentation in astrocytes,” Developmental Neuroscience, vol. 15, no. 3–5, pp. 359–366, 1993. View at Google Scholar · View at Scopus
  167. N. Kamasawa, A. Sik, M. Morita et al., “Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning,” Neuroscience, vol. 136, no. 1, pp. 65–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  168. C. C. Bruce, C. Zhao, and R. J. M. Franklin, “Remyelination—an effective means of neuroprotection,” Hormones and Behavior, vol. 57, no. 1, pp. 56–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Ahn, J. Lee, A. Gustafsson et al., “Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct,” Journal of Neuroscience Research, vol. 86, no. 5, pp. 992–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. M. Domercq, A. Perez-Samartin, D. Aparicio, E. Alberdi, O. Pampliega, and C. Matute, “P2X7 receptors mediate ischemic damage to oligodendrocytes,” Glia, vol. 58, no. 6, pp. 730–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. C. F. Brosnan and C. S. Raine, “Mechanisms of immune injury in multiple sclerosis,” Brain Pathology, vol. 6, no. 3, pp. 243–257, 1996. View at Google Scholar · View at Scopus
  172. C. P. Genain, K. Abel, N. Belmar et al., “Late complications of immune deviation therapy in a nonhuman primate,” Science, vol. 274, no. 5295, pp. 2054–2057, 1996. View at Publisher · View at Google Scholar · View at Scopus
  173. C. P. Genain, B. Cannella, S. L. Hauser, and C. S. Raine, “Identification of autoantibodies associated with myelin damage in multiple sclerosis,” Nature Medicine, vol. 5, no. 2, pp. 170–175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  174. C. Linington, M. Bradl, H. Lassmann, C. Brunner, and K. Vass, “Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein,” American Journal of Pathology, vol. 130, no. 3, pp. 443–454, 1988. View at Google Scholar · View at Scopus
  175. K. W. Selmaj and C. S. Raine, “Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro,” Annals of Neurology, vol. 23, no. 4, pp. 339–346, 1988. View at Google Scholar · View at Scopus
  176. T. Vartanian, L. Y. Li You, Z. M. Zhao Meijuan, and K. Stefansson, “Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis,” Molecular Medicine, vol. 1, no. 7, pp. 732–743, 1995. View at Google Scholar · View at Scopus
  177. L. Curatolo, B. Valsasina, C. Caccia, G. L. Raimondi, G. Orsini, and A. Bianchetti, “Recombinant human IL-2 is cytotoxic to oligodendrocytes after in vitro self aggregation,” Cytokine, vol. 9, no. 10, pp. 734–739, 1997. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Hisahara, S. Shoji, H. Okano, and M. Miura, “ICE/CED-3 family executes oligodendrocyte apoptosis by tumor necrosis factor,” Journal of Neurochemistry, vol. 69, no. 1, pp. 10–20, 1997. View at Google Scholar · View at Scopus
  179. A. Jurewicz, M. Matysiak, K. Tybor, L. Kilianek, C. S. Raine, and K. Selmaj, “Tumour necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor,” Brain, vol. 128, no. 11, pp. 2675–2688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. C. Agresti, M. E. Meomartini, S. Amadio et al., “ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors,” Brain Research Reviews, vol. 48, no. 2, pp. 157–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. J. E. Merrill and N. J. Scolding, “Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease,” Neuropathology and Applied Neurobiology, vol. 25, no. 6, pp. 435–458, 1999. View at Publisher · View at Google Scholar · View at Scopus
  182. P. Dowling, G. Shang, S. Raval, J. Menonna, S. Cook, and W. Husar, “Involvement of the CD95 (APO-1/Fas) receptor/ligand system in multiple sclerosis brain,” Journal of Experimental Medicine, vol. 184, no. 4, pp. 1513–1518, 1996. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Pouly, B. Becher, M. Blain, and J. P. Antel, “Interferon-γ modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 4, pp. 280–286, 2000. View at Google Scholar · View at Scopus
  184. R. Höftberger, F. Aboul-Enein, W. Brueck et al., “Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions,” Brain Pathology, vol. 14, no. 1, pp. 43–50, 2004. View at Google Scholar · View at Scopus
  185. J. Patel and R. Balabanov, “Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis,” International Journal of Molecular Sciences, vol. 13, pp. 10647–10659, 2012. View at Google Scholar
  186. L. Bö, S. Mörk, P. A. Kong, H. Nyland, C. A. Pardo, and B. D. Trapp, “Detection of MHC class II-antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions,” Journal of Neuroimmunology, vol. 51, no. 2, pp. 135–146, 1994. View at Publisher · View at Google Scholar · View at Scopus
  187. J. M. Redwine, M. J. Buchmeier, and C. F. Evans, “In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection,” American Journal of Pathology, vol. 159, no. 4, pp. 1219–1224, 2001. View at Google Scholar · View at Scopus
  188. K. Bergsteinsdottir, A. Brennan, K. R. Jessen, and R. Mirsky, “In the presence of dexamethasone, γ interferon induces rat oligodendrocytes to express major histocompatibility complex class II molecules,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 19, pp. 9054–9058, 1992. View at Publisher · View at Google Scholar · View at Scopus
  189. Q. Zhang, M. Raoof, Y. Chen et al., “Circulating mitochondrial DAMPs cause inflammatory responses to injury,” Nature, vol. 464, no. 7285, pp. 104–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  190. K. Harada, I. Hide, T. Seki, S. Tanaka, Y. Nakata, and N. Sakai, “Extracellular ATP differentially modulates Toll-like receptor 4-mediated cell survival and death of microglia,” Journal of Neurochemistry, vol. 116, no. 6, pp. 1138–1147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. W. G. Junger, “Immune cell regulation by autocrine purinergic signalling,” Nature Reviews Immunology, vol. 11, no. 3, pp. 201–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Bal-Price, Z. Moneer, and G. C. Brown, “Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes,” Glia, vol. 40, no. 3, pp. 312–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  193. V. Parpura, E. Scemes, and D. C. Spray, “Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release,” Neurochemistry International, vol. 45, no. 2-3, pp. 259–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  194. U. Schenk, A. M. Westendorf, E. Radaelli et al., “Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels,” Science Signaling, vol. 1, no. 39, p. ra6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  195. A. Tokunaga, M. Tsukimoto, H. Harada, Y. Moriyama, and S. Kojima, “Involvement of SLC17A9-dependent vesicular exocytosis in the mechanism of ATP release during T cell activation,” Journal of Biological Chemistry, vol. 285, no. 23, pp. 17406–17416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  196. R. Dahlquist and B. Diamant, “Interaction of ATP and calcium on the rat mast cell: effect on histamine release,” Acta Pharmacologica et Toxicologica, vol. 34, no. 5, pp. 368–384, 1974. View at Google Scholar · View at Scopus
  197. M. A. McCloskey, Y. Fan, and S. Luther, “Chemotaxis of rat mast cells toward adenine nucleotides,” Journal of Immunology, vol. 163, no. 2, pp. 970–977, 1999. View at Google Scholar · View at Scopus
  198. E. Bulanova, V. Budagian, Z. Orinska et al., “Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells,” Journal of Immunology, vol. 174, no. 7, pp. 3880–3890, 2005. View at Google Scholar · View at Scopus
  199. R. Suzuki, T. Furuno, D. M. McKay et al., “Direct neurite-mast cell communication in vitro occurs via the neuropeptide substance P,” Journal of Immunology, vol. 163, no. 5, pp. 2410–2415, 1999. View at Google Scholar · View at Scopus
  200. C. A. Hudson, G. P. Christophi, R. C. Gruber, J. R. Wilmore, D. A. Lawrence, and P. T. Massa, “Induction of IL-33 expression and activity in central nervous system glia,” Journal of Leukocyte Biology, vol. 84, no. 3, pp. 631–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. B. Zhang, S. Asadi, Z. Weng, N. Sismanopoulos, and T. C. Theoharides, “Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions,” PLoS ONE, vol. 7, Article ID e49767, 2012. View at Publisher · View at Google Scholar
  202. T. C. Theoharides, C. Spanos, X. Pang et al., “Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect,” Endocrinology, vol. 136, no. 12, pp. 5745–5750, 1995. View at Google Scholar · View at Scopus
  203. T. C. Theoharides, L. K. Singh, W. Boucher et al., “Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects,” Endocrinology, vol. 139, pp. 403–413, 1998. View at Publisher · View at Google Scholar
  204. J. Cao, N. Papadopoulou, D. Kempuraj et al., “Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor,” Journal of Immunology, vol. 174, no. 12, pp. 7665–7675, 2005. View at Google Scholar · View at Scopus
  205. P. Esposito, N. Chandler, K. Kandere et al., “Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress,” Journal of Pharmacology and Experimental Therapeutics, vol. 303, no. 3, pp. 1061–1066, 2002. View at Publisher · View at Google Scholar · View at Scopus
  206. K. D. Alysandratos, S. Asadi, A. Angelidou et al., “Neurotensin and CRH interactions augment human mast cell activation,” PLoS ONE, vol. 7, Article ID e48934, 2012. View at Publisher · View at Google Scholar
  207. S. Sugama, “Stress-induced microglial activation may facilitate the progression of neurodegenerative disorders,” Medical Hypotheses, vol. 73, no. 6, pp. 1031–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. S. Sugama, T. Takenouchi, M. Fujita, B. Conti, and M. Hashimoto, “Differential microglial activation between acute stress and lipopolysaccharide treatment,” Journal of Neuroimmunology, vol. 207, no. 1-2, pp. 24–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. M. Simard, W. T. Couldwell, W. Zhang et al., “Glucocorticoids-potent modulators of astrocytic calcium signaling,” Glia, vol. 28, pp. 1–12, 1999. View at Google Scholar
  210. C. Mirescu, J. D. Peters, and E. Gould, “Early life experience alters response of adult neurogenesis to stress,” Nature Neuroscience, vol. 7, no. 8, pp. 841–846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  211. B. Gómez-González and A. Escobar, “Prenatal stress alters microglial development and distribution in postnatal rat brain,” Acta Neuropathologica, vol. 119, no. 3, pp. 303–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  212. K. Helmut, U.-K. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, no. 2, pp. 461–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  213. G. Juckel, M. P. Manitz, M. Brüne, A. Friebe, M. T. Heneka, and R. J. Wolf, “Microglial activation in a neuroinflammational animal model of schizophrenia—a pilot study,” Schizophrenia Research, vol. 131, no. 1–3, pp. 96–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. D. J. Belliveau, M. Bani-Yaghoub, B. McGirr, C. C. G. Naus, and W. J. Rushlow, “Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP,” Journal of Biological Chemistry, vol. 281, no. 30, pp. 20920–20931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  215. D. J. Joseph, D. J. Williams, and A. B. MacDermott, “Modulation of neurite outgrowth by activation of calcium-permeable kainate receptors expressed by rat nociceptive-like dorsal root ganglion neurons,” Developmental Neurobiology, vol. 71, no. 10, pp. 818–835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  216. M. G. Frank, L. R. Watkins, and S. F. Maier, “Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse,” Brain, Behavior, and Immunity, vol. 25, no. 1, pp. S21–S28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  217. E. Goujon, P. Parnet, S. Laye, C. Combe, K. W. Kelley, and R. Dantzer, “Stress downregulates lipopolysaccharide-induced expression of proinflammatory cytokines in the spleen, pituitary, and brain of mice,” Brain, Behavior, and Immunity, vol. 9, no. 4, pp. 292–303, 1995. View at Publisher · View at Google Scholar · View at Scopus
  218. H. Anisman, “Cascading effects of stressors and inflammatory immune system activation: implications for major depressive disorder,” Journal of Psychiatry and Neuroscience, vol. 34, no. 1, pp. 4–20, 2009. View at Google Scholar · View at Scopus
  219. T. W. W. Pace and A. H. Miller, “Cytokines and glucocorticoid receptor signaling: relevance to major depression,” Annals of the New York Academy of Sciences, vol. 1179, pp. 86–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  220. J.-P. Gouin, L. Hantsoo, and J. K. Kiecolt-Glaser, “Immune dysregulation and chronic stress among older adults: a review,” NeuroImmunoModulation, vol. 15, no. 4-6, pp. 251–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. A. Nakata, “Psychosocial job stress and immunity: a systematic review,” Methods in Molecular Biology, vol. 934, pp. 39–75, 2012. View at Google Scholar
  222. A. Angelidou, S. Asadi, K. D. Alysandratos, A. Karagkouni, S. Kourembanas, and T. C. Theoharides, “Perinatal stress, brain inflammation and risk of autism-review and proposal,” BMC Pediatrics, vol. 12, p. 89, 2012. View at Google Scholar
  223. I. Garate, B. Garcia-Bueno, J. L. Madrigal et al., “Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway,” Biological Psychiatry, vol. 73, pp. 32–43, 2013. View at Google Scholar
  224. J. M. Frischer, S. Bramow, A. Dal-Bianco et al., “The relation between inflammation and neurodegeneration in multiple sclerosis brains,” Brain, vol. 132, no. 5, pp. 1175–1189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. T. C. Theoharides, B. Zhang, and P. Conti, “Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases,” Journal of Clinical Psychopharmacology, vol. 31, no. 6, pp. 685–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  226. H. Hagberg, P. Gressens, and C. Mallard, “Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults,” Annals of Neurology, vol. 71, no. 4, pp. 444–457, 2012. View at Publisher · View at Google Scholar · View at Scopus
  227. M. Vasiadi, A. Therianou, K. Sideri et al., “Increased serum CRH levels with decreased skin CRHR-1 gene expression in psoriasis and atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 129, no. 5, pp. 1410–1413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  228. P. Sanders and J. De Keyser, “Janus faces of microglia in multiple sclerosis,” Brain Research Reviews, vol. 54, no. 2, pp. 274–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  229. H. E. de Vries, J. Kuiper, A. G. De Boer, T. J. C. Van Berkel, and D. D. Breimer, “The blood-brain barrier in neuroinflammatory diseases,” Pharmacological Reviews, vol. 49, no. 2, pp. 143–155, 1997. View at Google Scholar · View at Scopus
  230. L. Tuomisto, H. Kilpeläinen, and P. Riekkinen, “Histamine and histamine-N-methyltransferase in the CSF of patients with multiple sclerosis,” Agents and Actions, vol. 13, no. 2-3, pp. 255–257, 1983. View at Publisher · View at Google Scholar · View at Scopus
  231. D. K. Kinney, K. M. Munir, D. J. Crowley, and A. M. Miller, “Prenatal stress and risk for autism,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 8, pp. 1519–1532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  232. G. P. Chrousos, F. Epstein, J. Flier, S. Reichlin, and S. Pavlou, “The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation,” The New England Journal of Medicine, vol. 332, no. 20, pp. 1351–1362, 1995. View at Publisher · View at Google Scholar · View at Scopus
  233. T. C. Theoharides, J. M. Donelan, N. Papadopoulou, J. Cao, D. Kempuraj, and P. Conti, “Mast cells as targets of corticotropin-releasing factor and related peptides,” Trends in Pharmacological Sciences, vol. 25, no. 11, pp. 563–568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  234. T. C. Theoharides and A. D. Konstantinidou, “Corticotropin-releaslng hormone and the blood-brain-barrier,” Frontiers in Bioscience, vol. 12, no. 5, pp. 1615–1628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  235. N. J. Abbott, “Inflammatory mediators and modulation of blood-brain barrier permeability,” Cellular and Molecular Neurobiology, vol. 20, no. 2, pp. 131–147, 2000. View at Publisher · View at Google Scholar · View at Scopus
  236. C. Giulivi, Y.-F. Zhang, A. Omanska-Klusek et al., “Mitochondrial dysfunction in autism,” Journal of the American Medical Association, vol. 304, no. 21, pp. 2389–2396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. L. Palmieri and A. M. Persico, “Mitochondrial dysfunction in autism spectrum disorders: cause or effect?” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 1130–1137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  238. R. E. Frye and D. A. Rossignol, “Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders,” Pediatric Research, vol. 69, no. 5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  239. A. M. Enstrom, W. A. J. Van De, and P. Ashwood, “Autoimmunity in autism,” Current Opinion in Investigational Drugs, vol. 10, no. 5, pp. 463–473, 2009. View at Google Scholar · View at Scopus
  240. T. C. Theoharides, D. Kempuraj, and L. Redwood, “Autism: an emerging “neuroimmune disorder” in search of therapy,” Expert Opinion on Pharmacotherapy, vol. 10, no. 13, pp. 2127–2143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  241. P. Goines and J. Van De Water, “The immune system's role in the biology of autism,” Current Opinion in Neurology, vol. 23, no. 2, pp. 111–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  242. S. Wills, M. Cabanlit, J. Bennett, P. Ashwood, D. G. Amaral, and J. Van de Water, “Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders,” Brain, Behavior, and Immunity, vol. 23, no. 1, pp. 64–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  243. B. Zhang, A. Angelidou, K.-D. Alysandratos et al., “Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children,” Journal of Neuroinflammation, vol. 7, article 80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  244. A. Angelidou, K. Francis, M. Vasiadi et al., “Neurotensin is increased in serum of young children with autistic disorder,” Journal of Neuroinflammation, vol. 7, article 48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  245. B. Zhang, K.-D. Alysandratos, A. Angelidou et al., “Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 127, no. 6, pp. 1522–e8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  246. F. von zur Muhlen, F. Eckstein, and R. Penner, “Guanosine 5-[β-thio]triphosphate selectively activates calcium signaling in mast cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 3, pp. 926–930, 1991. View at Publisher · View at Google Scholar · View at Scopus
  247. J. Gibb, S. Hayley, R. Gandhi, M. O. Poulter, and H. Anisman, “Synergistic and additive actions of a psychosocial stressor and endotoxin challenge: circulating and brain cytokines, plasma corticosterone and behavioral changes in mice,” Brain, Behavior, and Immunity, vol. 22, no. 4, pp. 573–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  248. L. Shi, S. E. P. Smith, N. Malkova, D. Tse, Y. Su, and P. H. Patterson, “Activation of the maternal immune system alters cerebellar development in the offspring,” Brain, Behavior, and Immunity, vol. 23, no. 1, pp. 116–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  249. D. Hinkerohe, D. Wolfkühler, A. Haghikia, C. Meier, P. M. Faustmann, and U. Schlegel, “Dexamethasone differentially regulates functional membrane properties in glioma cell lines and primary astrocytes in vitro,” Journal of Neuro-Oncology, vol. 103, no. 3, pp. 479–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  250. J. Gibb, S. Hayley, M. O. Poulter, and H. Anisman, “Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity,” Brain, Behavior, and Immunity, vol. 25, no. 3, pp. 468–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  251. S. Hayley, E. Mangano, M. Strickland, and H. Anisman, “Lipopolysaccharide and a social stressor influence behaviour, corticosterone and cytokine levels: divergent actions in cyclooxygenase-2 deficient mice and wild type controls,” Journal of Neuroimmunology, vol. 197, no. 1, pp. 29–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  252. S. D. Bilbo and J. M. Schwarz, “Early-life programming of later-life brain and behavior: a critical role for the immune system,” Frontiers in Behavioral Neuroscience, vol. 3, p. 14, 2009. View at Publisher · View at Google Scholar
  253. T. A. Kato and S. Kanba, “Are microglia minding us? Digging up the unconscious mind-brain relationship from a neuropsychoanalytic approach,” Frontiers in Human Neuroscience, vol. 7, p. 13, 2013. View at Publisher · View at Google Scholar