Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 915189, 7 pages
http://dx.doi.org/10.1155/2013/915189
Research Article

Inflammatory Pain and Corticosterone Response in Infant Rats: Effect of 5-HT1A Agonist Buspirone Prior to Gestational Stress

1Laboratory of Ontogeny of the Nervous System, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, St. Petersburg 199034, Russia
2Laboratory of Experimental Endocrinology, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, St. Petersburg 199034, Russia
3Department of Applied Mathematics, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, St. Petersburg 199034, Russia
4Department of Physiology, University of Siena, Neuroscience and Applied Physiology Section, Via Aldo Moro 2, 53100 Siena, Italy

Received 31 January 2013; Accepted 6 March 2013

Academic Editor: Metoda Lipnik-Stangelj

Copyright © 2013 Irina P. Butkevich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Chaouloff, “Serotonin, stress and corticoids,” Journal of Psychopharmacology, vol. 14, no. 2, pp. 139–151, 2000. View at Google Scholar · View at Scopus
  2. H. Takeda, M. Tsuji, and T. Matsumiya, “Formation mechanisms of stress adaption: role of functional coupling of glucocorticoids and brain serotonergic nervous system,” Japanese Journal of Psychopharmacology, vol. 20, no. 3, pp. 83–91, 2000. View at Google Scholar · View at Scopus
  3. A. H. Veenema, J. M. Koolhaas, and E. R. de Kloet, “Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines,” Annals of the New York Academy of Sciences, vol. 1018, pp. 255–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Lanfumey, C. Mannoury La Cour, N. Froger, and M. Hamon, “5-HT-HPA Interactions in Two Models of Transgenic Mice Relevant to Major Depression,” Neurochemical Research, vol. 25, no. 9-10, pp. 1199–1206, 2000. View at Google Scholar · View at Scopus
  5. M. Pompili, G. Serafini, M. Innamorati et al., “The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention,” European Archives of Psychiatry and Clinical Neuroscience, vol. 260, no. 8, pp. 583–600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Vázquez, C. R. Neal Jr., P. D. Patel et al., “Regulation of corticoid and serotonin receptor brain system following early life exposure of glucocorticoids: long term implications for the neurobiology of mood,” Psychoneuroendocrinology, vol. 37, no. 3, pp. 421–437, 2012. View at Google Scholar
  7. M. Strittmatter, M. T. Grauer, M. C. Fischer et al., “Autonomic nervous system and neuroendocrine changes in patients with idiopathic trigeminal neuralgia,” Cephalalgia, vol. 16, no. 7, pp. 476–480, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Pacak, M. Palkovits, G. Yadid et al., “Heterogeneous neurochemical responses to different stressors: a test of Selye’s doctrine of nonspecificity,” American Journal of Physiology, vol. 275, no. 4, part 2, pp. 1247–1255, 1998. View at Google Scholar
  9. B. K. Taylor, S. F. Akana, M. A. Peterson, M. F. Dallman, and A. I. Basbaum, “Pituitary-adrenocortical responses to persistent noxious stimuli in the awake rat: endogenous corticosterone does not reduce nociception in the formalin test,” Endocrinology, vol. 139, no. 5, pp. 2407–2413, 1998. View at Google Scholar · View at Scopus
  10. Y. Shavit, J. Weidenfeld, F. G. Dekeyser et al., “Effects of surgical stress on brain prostaglandin E2 production and on the pituitary-adrenal axis: attenuation by preemptive analgesia and by central amygdala lesion,” Brain Research, vol. 1047, no. 1, pp. 10–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Anton, “Chronic stress and pain—a plea for a concerted research program,” Pain, vol. 143, no. 3, pp. 163–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Goldkuhl, A. Klockars, H. E. Carlsson, J. Hau, and K. S. P. Abelson, “Impact of surgical severity and analgesic treatment on plasma corticosterone in rats during surgery,” European Surgical Research, vol. 44, no. 2, pp. 117–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Rouwette, K. Klemann, B. Gaszner et al., “Differential responses of corticotropin-releasing factor and urocortin 1 to acute pain stress in the rat brain,” Neuroscience, vol. 183, pp. 15–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Benedetti, R. Merino, R. Kusuda et al., “Plasma corticosterone levels in mouse models of pain,” European Journal of Pain, vol. 16, no. 6, pp. 803–815, 2012. View at Google Scholar
  15. P.-E. Juif, F. Anton, and U. Hanesch, “Pain behavior and spinal cell activation due to carrageenan-induced inflammation in two inbred rat strains with differential hypothalamic-pituitary-adrenal axis reactivity,” Physiology and Behavior, vol. 105, no. 4, pp. 901–908, 2012. View at Google Scholar
  16. E. M. Sternberg, J. M. Hill, G. P. Chrousos et al., “Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 7, pp. 2374–2378, 1989. View at Google Scholar · View at Scopus
  17. A. M. Aloisi, M. E. Albonetti, M. Muscettola, F. Facchinetti, C. Tanganelli, and G. Carli, “Effects of formalin-induced pain on ACTH, beta-endorphin, corticosterone and interleukin-6 plasma levels in rats,” Neuroendocrinology, vol. 62, no. 1, pp. 13–18, 1995. View at Google Scholar · View at Scopus
  18. K. C. Vissers, R. F. de Jongh, B. J. Crul et al., “Adrenalectomy affects pain behavior of rats after formalin injection,” Life Sciences, vol. 74, no. 10, pp. 1243–1251, 2004. View at Google Scholar
  19. B. Mravec, I. Bodnár, A. Tillinger et al., “Prolactin response to formalin is related to the acute nociceptive response and it is attenuated by combined application of different stressors,” Neuroendocrinology, vol. 86, no. 2, pp. 69–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. F. Dallman, “Editorial: moments in time—the neonatal rat hypothalamo-pituitary-adrenal axis,” Endocrinology, vol. 141, no. 5, pp. 1590–1592, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. I. P. Butkevich, V. A. Mikhailenko, E. A. Vershinina et al., “Buspirone before prenatal stress protects against adverse effects of stress on emotional and inflammatory pain behaviors in infant rats: age and sex differences,” Brain Research, vol. 1419, no. 1, pp. 76–84, 2011. View at Google Scholar
  22. M. Weinstock, “The long-term behavioral consequences of prenatal stress,” Neuroscience & Biobehavioral Reviews, vol. 32, no. 6, pp. 1073–1083, 2008. View at Google Scholar
  23. A. Hayashi, M. Nagaoka, K. Yamada, Y. Ichitani, Y. Miake, and N. Okado, “Maternal stress induces synaptic loss and developmental disabilities of offspring,” International Journal of Developmental Neuroscience, vol. 16, no. 3-4, pp. 209–216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Lauder, “Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal,” Annals of the New York Academy of Sciences, vol. 600, pp. 297–313, 1990. View at Google Scholar
  25. E. C. Azmitia, “Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis,” Brain Research Bulletin, vol. 56, no. 5, pp. 413–424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Gaspar and C. Lillesaar, “Probing the diversity of serotonin neurons,” Philosophical Transactions of the Royal Society, vol. 367, no. 1601, pp. 2382–2394, 2012. View at Google Scholar
  27. T. F. Oberlander, “Fetal serotonin signaling: setting pathways for early childhood development and behavior,” Journal of Adolescent Health, vol. 51, no. 2, pp. 9–16, 2012. View at Google Scholar
  28. A. Bonnin, N. Goeden, K. Chen et al., “A transient placental source of serotonin for the fetal forebrain,” Nature, vol. 472, no. 7343, pp. 347–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. M. Whitaker-Azmitia, M. Druse, P. Walker, and J. M. Lauder, “Serotonin as a developmental signal,” Behavioural Brain Research, vol. 73, no. 1-2, pp. 19–29, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. P. K. Eide and K. Hole, “The role of 5-hydroxytryptamine (5-HT) receptor subtypes and plasticity in the 5-HT systems in the regulation of nociceptive sensitivity,” Cephalalgia, vol. 13, no. 2, pp. 75–85, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Hamon and S. Bourgoin, “Serotonin and its receptors in pain control,” in Novel Aspects of Pain Management, J. Sawynok and A. Cowan, Eds., pp. 203–228, John Wiley & Sons, New York, NY, USA, 1999. View at Google Scholar
  32. F. C. Colpaert, M. Hamon, and Z. Wiesenfeld-Hallin, “5-HT1A receptors in chronic pain processing and control,” in Proceedings of the 11th World Congress on Pain, H. Flor, E. Kalso, and J. O. Dostrovsky, Eds., IASP Press, Seattle, Wash, USA, 2006. View at Google Scholar
  33. J. M. Braz and A. I. Basbaum, “Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits,” Journal of Comparative Neurology, vol. 507, no. 6, pp. 1990–2003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Weinstock, “Intrauterine factors as determinants of depressive disorder,” Israel Journal of Psychiatry & Related Sciences, vol. 47, no. 1, pp. 36–45, 2010. View at Google Scholar
  35. H. Belay, C. L. Burton, V. Lovic, M. J. Meaney, M. Sokolowski, and A. S. Fleming, “Early Adversity and Serotonin Transporter Genotype Interact With Hippocampal Glucocorticoid Receptor mRNA Expression, Corticosterone, and Behavior in Adult Male Rats,” Behavioral Neuroscience, vol. 125, no. 2, pp. 150–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Miyagawa, M. Tsuji, K. Fujimori, Y. Saito, and H. Takeda, “Prenatal stress induces anxiety-like behavior together with the disruption of central serotonin neurons in mice,” Neuroscience Research, vol. 70, no. 1, pp. 111–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D. V. Sivarao, K. Newberry, and N. J. Lodge, “Effect of the 5HT1A receptor partial agonist buspirone on colorectal distension-induced pseudoaffective and behavioral responses in the female Wistar rat,” European Journal of Pharmacology, vol. 494, no. 1, pp. 23–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Pavlaković, J. Tigges, and T. A. Crozier, “Effect of buspirone on thermal sensory and pain thresholds in human volunteers,” BMC Clinical Pharmacology, vol. 9, article 12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. M. van Praag, “Can stress cause depression?” World Journal of Biological Psychiatry, vol. 6, no. s2, pp. 5–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. L. W. Lim, Y. Temel, V. Visser-Vandewalle et al., “Effect of buspirone on the behavioral regulation of rats in low versus high anxiety conditions,” Arzneimittelforschung, vol. 58, no. 6, pp. 269–276, 2008. View at Google Scholar · View at Scopus
  41. J. A. Kim and M. J. Druse, “Protective effects of maternal buspirone treatment on serotonin reuptake sites in ethanol-exposed offspring,” Developmental Brain Research, vol. 92, no. 2, pp. 190–198, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Cimino, F. Ponzio, and G. Achilli, “Dopaminergic effects of buspirone, a novel anxiolytic agent,” Biochemical Pharmacology, vol. 32, no. 6, pp. 1069–1074, 1983. View at Publisher · View at Google Scholar · View at Scopus
  43. T. J. Rimeli, D. E. Henry, D. K. H. Lee et al., “Tissue-dependent alpha adrenoceptor activity of buspirone and related compounds,” Journal of Pharmacology and Experimental Therapeutics, vol. 241, no. 3, pp. 771–778, 1987. View at Google Scholar
  44. H. Wheeler-Aceto and A. Cowan, “Standardization of the rat paw formalin test for the evaluation of analgesics,” Psychopharmacology, vol. 104, no. 1, pp. 35–44, 1991. View at Google Scholar · View at Scopus
  45. E. R. Guy and F. V. Abbott, “The behavioral response to formalin in preweanling rats,” Pain, vol. 51, no. 1, pp. 81–90, 1992. View at Publisher · View at Google Scholar · View at Scopus
  46. G. A. Barr, “Maturation of the biphasic behavioral and heart rate response in the formalin test,” Pharmacology Biochemistry and Behavior, vol. 60, no. 2, pp. 329–335, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Yamada, D. Zuo, T. Yamamoto et al., “NAAG peptidase inhibition in the periaqueductal gray and rostral ventromedial medulla reduces flinching in the formalin model of inflammation,” Molecular Pain, vol. 8, article 67, 2012. View at Publisher · View at Google Scholar
  48. G. A. Barr, “Formalin-induced c-fos expression in the brain of infant rats,” Journal of Pain, vol. 12, no. 2, pp. 263–271, 2011. View at Google Scholar
  49. I. Zouikr, M. A. Tadros, V. L. Clifton et al., “Low formalin concentrations induce fine-tuned responses that are sex and agedependent: a developmental study,” PLoS One, vol. 8, no. 1, article e53384, 2013. View at Google Scholar
  50. A. Tjolsen, O. G. Berge, S. Hunskaar, J. H. Rosland, and K. Hole, “The formalin test: an evaluation of the method,” Pain, vol. 51, no. 1, pp. 5–17, 1992. View at Publisher · View at Google Scholar · View at Scopus
  51. I. P. Butkevich, V. A. Mikhailenko, E. A. Vershinina, P. O. Semionov, V. A. Otellin, and A. M. Aloisi, “Heterogeneity of the infant stage of rat development: inflammatory pain response, depression-related behavior, and effects of prenatal stress,” Brain Research, vol. 1286, pp. 53–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. L. P. Filaretova, A. A. Filaretov, and G. B. Makara, “Corticosterone increase inhibits stress-induced gastric erosions in rats,” American Journal of Physiology, vol. 274, no. 6, pp. G1024–G1030, 1998. View at Google Scholar · View at Scopus
  53. F. V. Abbott, K. B. J. Franklin, and R. F. Westbrook, “The formalin test: scoring properties of the first and second phases of the pain response in rats,” Pain, vol. 60, no. 1, pp. 91–102, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Capone and A. M. Aloisi, “Refinement of pain evaluation techniques. The formalin test,” Annali dell'Istituto Superiore di Sanita, vol. 40, no. 2, pp. 223–229, 2004. View at Google Scholar · View at Scopus
  55. D. L. A. van den Hove, H. W. M. Steinbusch, A. Scheepens et al., “Prenatal stress and neonatal rat brain development,” Neuroscience, vol. 137, no. 1, pp. 145–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. B. L. Jacobs and E. C. Azmitia, “Structure and function of the brain serotonin system,” Physiological Reviews, vol. 72, no. 1, pp. 165–229, 1992. View at Google Scholar · View at Scopus
  57. M. Palkovits, J. S. Baffi, and K. Pacak, “The role of ascending neuronal pathways in stress-induced release of noradrenaline in the hypothalamic paraventricular nucleus of rats,” Journal of Neuroendocrinology, vol. 11, no. 7, pp. 529–539, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Lu, L. Zhu, and Y. J. Gao, “Pain-related aversion induces astrocytic reaction and proinflammatory cytokine expression in the anterior cingulate cortex in rats,” Brain Research Bulletin, vol. 84, no. 2, pp. 178–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. T. D. Patel and F. C. Zhou, “Ontogeny of 5-HT1A receptor expression in the developing hippocampus,” Developmental Brain Research, vol. 157, no. 1, pp. 42–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. D. L. A. van den Hove, J. M. Lauder, A. Scheepens, J. Prickaerts, C. E. Blanco, and H. W. M. Steinbusch, “Prenatal stress in the rat alters 5-HT1A receptor binding in the ventral hippocampus,” Brain Research, vol. 1090, no. 1, pp. 29–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Boyd, Psychiatric Nursing, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2008.
  62. J. A. Kim, R. A. Gillespie, and M. J. Druse, “Effects of maternal ethanol consumption and buspirone treatment on 5- HT1A and 5-HT2A receptors in offspring,” Alcoholism, vol. 21, no. 7, pp. 1169–1178, 1997. View at Google Scholar · View at Scopus