Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2013, Article ID 986734, 13 pages
http://dx.doi.org/10.1155/2013/986734
Review Article

Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance

Internal Medicine Department, Faculty of Medical Sciences, FCM, UNICAMP, Rua Tessália Vieira de Camargo, 126 Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil

Received 3 April 2013; Accepted 16 May 2013

Academic Editor: Massimo Collino

Copyright © 2013 Bruno Melo Carvalho and Mario Jose Abdalla Saad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. K. Glass and J. M. Olefsky, “Inflammation and lipid signaling in the etiology of insulin resistance,” Cell Metabolism, vol. 15, no. 5, pp. 635–645, 2012. View at Publisher · View at Google Scholar
  2. P. G. Kopelman, “Obesity as a medical problem,” Nature, vol. 404, no. 6778, pp. 635–643, 2000. View at Google Scholar · View at Scopus
  3. M. M. Finucane, G. A. Stevens, M. J. Cowan et al., “National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants,” The Lancet, vol. 377, no. 9765, pp. 557–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. V. A. Ferreira and R. Magalhães, “Obesidade no Brasil: tendências atuais,” Revista Portuguesa De SaúDe Pública, vol. 24, no. 2, pp. 71–91, 2006. View at Google Scholar
  5. WHO, “Obesity and overweight,” Fact sheet 311, 2013, http://www.who.int/mediacentre/factsheets/fs311/en/.
  6. K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence and trends in obesity among US adults, 1999–2008,” The Journal of the American Medical Association, vol. 303, no. 3, pp. 235–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. B. de Gonzalez, P. Hartge, J. R. Cerhan et al., “Body-mass index and mortality among 1.46 million white adults,” The New England Journal of Medicine, vol. 363, no. 23, pp. 2211–2219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Google Scholar · View at Scopus
  10. J. Qin, R. Li, J. Raes et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010. View at Publisher · View at Google Scholar
  11. J. Xu and J. I. Gordon, “Honor thy symbionts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 18, pp. 10452–10459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Bocci, “The neglected organ: bacterial flora has a crucial immunostimulatory role,” Perspectives in Biology and Medicine, vol. 35, no. 2, pp. 251–260, 1992. View at Google Scholar · View at Scopus
  13. P. D. Cani and N. M. Delzenne, “The role of the gut microbiota in energy metabolism and metabolic disease,” Current Pharmaceutical Design, vol. 15, no. 13, pp. 1546–1558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Bäckhed, H. Ding, T. Wang et al., “The gut microbiota as an environmental factor that regulates fat storage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15718–15723, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, “Mechanisms underlying the resistance to diet-induced obesity in germ-free mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 979–984, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. F. Andersson, M. Lindberg, H. Jakobsson, F. Bäckhed, P. Nyrén, and L. Engstrand, “Comparative analysis of human gut microbiota by barcoded pyrosequencing,” PLoS ONE, vol. 3, no. 7, Article ID e2836, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. R. Gill, M. Pop, R. T. DeBoy et al., “Metagenomic analysis of the human distal gut microbiome,” Science, vol. 312, no. 5778, pp. 1355–1359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Ley, F. Bäckhed, P. Turnbaugh, C. A. Lozupone, R. D. Knight, and J. I. Gordon, “Obesity alters gut microbial ecology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 31, pp. 11070–11075, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, “An obesity-associated gut microbiome with increased capacity for energy harvest,” Nature, vol. 444, no. 7122, pp. 1027–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. P. Ferraris and R. R. Vinnakota, “Intestinal nutrient transport in genetically obese mice,” The American Journal of Clinical Nutrition, vol. 62, no. 3, pp. 540–546, 1995. View at Google Scholar · View at Scopus
  22. B. P. Warwick and D. R. Romsos, “Energy balance in adrenalectomized ob/ob mice: effects of dietary starch and glucose,” The American Journal of Physiology, vol. 255, no. 1, part 2, pp. R141–R148, 1988. View at Google Scholar · View at Scopus
  23. J. R. Mujico, G. C. Baccan, A. Gheorghe, L. E. Díaz, and A. Marcos, “Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice,” The British Journal of Nutrition, 2013. View at Publisher · View at Google Scholar
  24. J. A. Parnell and R. A. Reimer, “Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome,” Gut Microbes, vol. 3, no. 1, pp. 29–34, 2012. View at Publisher · View at Google Scholar
  25. M. Ferrer, A. Ruiz, F. Lanza et al., “Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure,” Environmental Microbiology, vol. 15, no. 1, pp. 211–226, 2013. View at Publisher · View at Google Scholar
  26. A. M. Caricilli, P. K. Picardi, L. L. de Abreu et al., “Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice,” PLOS Biology, vol. 9, no. 12, Article ID e1001212, 2011. View at Publisher · View at Google Scholar
  27. B. M. Carvalho, D. Guadagnini, D. M. Tsukumo et al., “Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice,” Diabetologia, vol. 55, no. 10, pp. 2823–2834, 2012. View at Publisher · View at Google Scholar
  28. J. Henao-Mejia, E. Elinav, C. Jin et al., “Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity,” Nature, vol. 482, no. 7384, pp. 179–185, 2012. View at Publisher · View at Google Scholar
  29. A. Schwiertz, D. Taras, K. Schäfer et al., “Microbiota and SCFA in lean and overweight healthy subjects,” Obesity, vol. 18, no. 1, pp. 190–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. C. Collado, E. Isolauri, K. Laitinen, and S. Salminen, “Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women,” The American Journal of Clinical Nutrition, vol. 88, no. 4, pp. 894–899, 2008. View at Google Scholar · View at Scopus
  31. J. C. Arthur, E. Perez-Chanona, M. Muhlbauer et al., “Intestinal inflammation targets cancer-inducing activity of the microbiota,” Science, vol. 338, no. 6103, pp. 120–123, 2012. View at Publisher · View at Google Scholar
  32. S. Akira and K. Takeda, “Toll-like receptor signalling,” Nature Reviews Immunology, vol. 4, no. 7, pp. 499–511, 2004. View at Google Scholar · View at Scopus
  33. R. Medzhitov and T. Horng, “Transcriptional control of the inflammatory response,” Nature Reviews Immunology, vol. 9, no. 10, pp. 692–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. G. Oliveira, B. M. Carvalho, N. Tobar et al., “Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats,” Diabetes, vol. 60, no. 3, pp. 784–796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. D. Cani, R. Bibiloni, C. Knauf et al., “Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice,” Diabetes, vol. 57, no. 6, pp. 1470–1481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. J. Creely, P. G. McTernan, C. M. Kusminski et al., “Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes,” The American Journal of Physiology, vol. 292, no. 3, pp. E740–E747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Brun, I. Castagliuolo, V. Di Leo et al., “Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis,” The American Journal of Physiology, vol. 292, no. 2, pp. G518–G525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Burcelin, L. Garidou, and C. Pomie, “Immuno-microbiota cross and talk: the new paradigm of metabolic diseases,” Seminars in Immunology, vol. 24, no. 1, pp. 67–74, 2012. View at Publisher · View at Google Scholar
  39. J. Amar, C. Chabo, A. Waget et al., “Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment,” EMBO Molecular Medicine, vol. 3, no. 9, pp. 559–572, 2011. View at Publisher · View at Google Scholar
  40. S. Ghoshal, J. Witta, J. Zhong, W. de Villiers, and E. Eckhardt, “Chylomicrons promote intestinal absorption of lipopolysaccharides,” Journal of Lipid Research, vol. 50, no. 1, pp. 90–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Lien, T. K. Means, H. Heine et al., “Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide,” Journal of Clinical Investigation, vol. 105, no. 4, pp. 497–504, 2000. View at Google Scholar · View at Scopus
  42. T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on toll-like receptors,” Nature Immunology, vol. 11, no. 5, pp. 373–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. I. Miller, R. K. Ernst, and M. W. Bader, “LPS, TLR4 and infectious disease diversity,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 36–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012. View at Publisher · View at Google Scholar
  45. M. Vijay-Kumar, J. D. Aitken, F. A. Carvalho et al., “Metabolie syndrome and altered gut microbiota in mice lacking toll-like receptor 5,” Science, vol. 328, no. 5975, pp. 228–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Ubeda, L. Lipuma, A. Gobourne et al., “Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice,” Journal of Experimental Medicine, vol. 209, no. 8, pp. 1445–1456, 2012. View at Publisher · View at Google Scholar
  47. K. L. Calisto, B. M. Carvalho, E. R. Ropelle et al., “Atorvastatin improves survival in septic rats: effect on tissue inflammatory pathway and on insulin signaling,” PLoS ONE, vol. 5, no. 12, Article ID e14232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Milanski, G. Degasperi, A. Coope et al., “Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity,” Journal of Neuroscience, vol. 29, no. 2, pp. 359–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. K. A. Kim, W. Gu, I. A. Lee, E. H. Joh, and D. H. Kim, “High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway,” PLoS ONE, vol. 7, no. 10, Article ID e47713, 2012. View at Publisher · View at Google Scholar
  50. D. M. L. Tsukumo, M. A. Carvalho-Filho, J. B. C. Carvalheira et al., “Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance,” Diabetes, vol. 56, no. 8, pp. 1986–1998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. P. D. Cani, J. Amar, M. A. Iglesias et al., “Metabolic endotoxemia initiates obesity and insulin resistance,” Diabetes, vol. 56, no. 7, pp. 1761–1772, 2007. View at Google Scholar
  52. H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier, “TLR4 links innate immunity and fatty acid-induced insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 3015–3025, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Schaeffler, P. Gross, R. Buettner et al., “Fatty acid-induced induction of toll-like receptor-4/nuclear factor-κB pathway in adipocytes links nutritional signalling with innate immunity,” Immunology, vol. 126, no. 2, pp. 233–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Erridge and N. J. Samani, “Saturated fatty acids do not directly stimulate toll-like receptor signaling,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 11, pp. 1944–1949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. J. Cayatte, L. Kumbla, and M. T. R. Subbiah, “Marked acceleration of exogenous fatty acid incorporation into cellular triglycerides by fetuin,” The Journal of Biological Chemistry, vol. 265, no. 10, pp. 5883–5888, 1990. View at Google Scholar · View at Scopus
  56. D. Pal, S. Dasgupta, R. Kundu et al., “Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance,” Nature Medicine, vol. 18, pp. 1279–1285, 2012. View at Publisher · View at Google Scholar
  57. H. Y. Ou, H. T. Wu, H. C. Hung, Y. C. Yang, J. S. Wu, and C. J. Chang, “Endoplasmic reticulum stress induces the expression of fetuin-A to develop insulin resistance,” Endocrinology, vol. 153, no. 7, pp. 2974–2984, 2012. View at Publisher · View at Google Scholar
  58. N. A. Ismail, S. Ragab, S. M. El Dayem et al., “Fetuin-A levels in obesity: differences in relation to metabolic syndrome and correlation with clinical and laboratory variables,” Archives of Medical Science, vol. 8, no. 5, pp. 826–833, 2012. View at Publisher · View at Google Scholar
  59. T. Reinehr and C. L. Roth, “Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4479–4485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. T. Mathews, G. P. Singh, M. Ranalletta et al., “Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene,” Diabetes, vol. 51, no. 8, pp. 2450–2458, 2002. View at Google Scholar · View at Scopus
  61. S. T. Mathews, S. Rakhade, X. Zhou, G. C. Parker, D. V. Coscina, and G. Grunberger, “Fetuin-null mice are protected against obesity and insulin resistance associated with aging,” Biochemical and Biophysical Research Communications, vol. 350, no. 2, pp. 437–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. E. Elinav, T. Strowig, A. L. Kau et al., “NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis,” Cell, vol. 145, no. 5, pp. 745–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Strowig, J. Henao-Mejia, E. Elinav, and R. Flavell, “Inflammasomes in health and disease,” Nature, vol. 481, no. 7381, pp. 278–286, 2012. View at Publisher · View at Google Scholar
  64. K. Schroder, V. Sagulenko, A. Zamoshnikova et al., “Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction,” Immunobiology, vol. 217, no. 12, pp. 1325–1329, 2012. View at Publisher · View at Google Scholar
  65. Y. Qiao, P. Wang, J. Qi, L. Zhang, and C. Gao, “TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages,” FEBS Letters, vol. 586, no. 7, pp. 1022–1026, 2012. View at Publisher · View at Google Scholar
  66. C. E. Samuel, “The eIF-2α protein kinases, regulators of translation in eukaryotes from yeasts to humans,” The Journal of Biological Chemistry, vol. 268, no. 11, pp. 7603–7606, 1993. View at Google Scholar · View at Scopus
  67. M. A. García, J. Gil, I. Ventoso et al., “Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action,” Microbiology and Molecular Biology Reviews, vol. 70, no. 4, pp. 1032–1060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Hirosumi, G. Tuncman, L. Chang et al., “A central, role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. M. C. Arkan, A. L. Hevener, F. R. Greten et al., “IKK-β links inflammation to obesity-induced insulin resistance,” Nature Medicine, vol. 11, no. 2, pp. 191–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. V. Aguirre, E. D. Werner, J. Giraud, Y. H. Lee, S. E. Shoelson, and M. F. White, “Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action,” The Journal of Biological Chemistry, vol. 277, no. 2, pp. 1531–1537, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Nakamura, M. Furuhashi, P. Li et al., “Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis,” Cell, vol. 140, no. 3, pp. 338–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. Carvalho-Filho, B. M. Carvalho, A. G. Oliveira et al., “Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice,” Endocrinology, vol. 153, no. 11, pp. 5261–5274, 2012. View at Publisher · View at Google Scholar
  73. L. C. Hsu, J. M. Park, K. Zhang et al., “The protein kinase PKR is required for macrophage apoptosis after activation of toll-like receptor 4,” Nature, vol. 428, no. 6980, pp. 341–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Cabanski, M. Steinmüller, L. M. Marsh, E. Surdziel, W. Seeger, and J. Lohmeyer, “PKR regulates TLR2/TLR4-dependent signaling in murine alveolar macrophages,” The American Journal of Respiratory Cell and Molecular Biology, vol. 38, no. 1, pp. 26–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. G. A. Peters, R. Hartmann, J. Qin, and G. C. Sen, “Modular structure of PACT: distinct domains for binding and activating PKR,” Molecular and Cellular Biology, vol. 21, no. 6, pp. 1908–1920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. B. R. Williams, “Signal integration via PKR,” Science's STKE, vol. 2001, no. 89, p. RE2, 2001. View at Google Scholar · View at Scopus
  77. S. Symeonides and R. A. Balk, “Nitric oxide in the pathogenesis of sepsis,” Infectious Disease Clinics of North America, vol. 13, no. 2, pp. 449–463, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Sugita, M. Kaneki, E. Tokunaga et al., “Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance,” The American Journal of Physiology, vol. 282, no. 2, pp. E386–E394, 2002. View at Google Scholar · View at Scopus
  79. J. S. Stamler, D. I. Simon, J. A. Osborne et al., “S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 1, pp. 444–448, 1992. View at Google Scholar · View at Scopus
  80. J. S. Stamler, E. J. Toone, S. A. Lipton, and N. J. Sucher, “(S)NO signals: translocation, regulation, and a consensus motif,” Neuron, vol. 18, no. 5, pp. 691–696, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Shinozaki, C. S. Choi, N. Shimizu et al., “Liver-specific inducible nitric-oxide synthase expression is sufficient to cause hepatic insulin resistance and mild hyperglycemia in mice,” The Journal of Biological Chemistry, vol. 286, no. 40, pp. 34959–34975, 2011. View at Publisher · View at Google Scholar
  82. M. A. Carvalho-Filho, M. Ueno, S. M. Hirabara et al., “S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance,” Diabetes, vol. 54, no. 4, pp. 959–967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Ovadia, Y. Haim, O. Nov et al., “Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity,” The Journal of Biological Chemistry, vol. 286, no. 35, pp. 30433–30443, 2011. View at Publisher · View at Google Scholar
  84. M. A. Carvalho-Filho, M. Ueno, J. B. C. Carvalheira, L. A. Velloso, and M. J. A. Saad, “Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRβ/IRS-1 and Akt and insulin resistance in muscle of mice,” The American Journal of Physiology, vol. 291, no. 3, pp. E476–E482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. E. R. Ropelle, J. R. Pauli, D. E. Cintra et al., “Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice,” Diabetes, vol. 62, no. 2, pp. 466–470, 2013. View at Publisher · View at Google Scholar
  86. J. R. Pauli, E. R. Ropelle, D. E. Cintra et al., “Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats,” Journal of Physiology, vol. 586, no. 2, pp. 659–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. M. A. Carvalho-Filho, E. R. Ropelle, R. J. Pauli et al., “Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRβ/IRS-1 and Akt,” Diabetologia, vol. 52, no. 11, pp. 2425–2434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. G. T. Macfarlane and S. Macfarlane, “Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics,” Journal of Clinical Gastroenterology, vol. 45, pp. S120–S127, 2011. View at Publisher · View at Google Scholar
  89. J. H. Cummings, E. W. Pomare, W. J. Branch, C. P. E. Naylor, and G. T. Macfarlane, “Short chain fatty acids in human large intestine, portal, hepatic and venous blood,” Gut, vol. 28, no. 10, pp. 1221–1227, 1987. View at Google Scholar · View at Scopus
  90. P. Louis and H. J. Flint, “Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine,” FEMS Microbiology Letters, vol. 294, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Louis, K. P. Scott, S. H. Duncan, and H. J. Flint, “Understanding the effects of diet on bacterial metabolism in the large intestine,” Journal of Applied Microbiology, vol. 102, no. 5, pp. 1197–1208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. S. M. Ardawi and E. A. Newsholme, “Fuel utilization in colonocytes of the rat,” Biochemical Journal, vol. 231, no. 3, pp. 713–719, 1985. View at Google Scholar · View at Scopus
  93. W. E. Roediger, “Short chain fatty acids as metabolic regulators of ion absorption in the colon,” Acta Veterinaria Scandinavica Supplementum, vol. 86, pp. 116–125, 1989. View at Google Scholar · View at Scopus
  94. N. M. Delzenne and C. M. Williams, “Prebiotics and lipid metabolism,” Current Opinion in Lipidology, vol. 13, no. 1, pp. 61–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. S. H. Al-Lahham, M. P. Peppelenbosch, H. Roelofsen, R. J. Vonk, and K. Venema, “Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms,” Biochimica et Biophysica Acta, vol. 1801, no. 11, pp. 1175–1183, 2010. View at Publisher · View at Google Scholar
  96. M. Elia and J. H. Cummings, “Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates,” European Journal of Clinical Nutrition, vol. 61, supplement 1, pp. S40–S74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Devillard, F. M. McIntosh, S. H. Duncan, and R. J. Wallace, “Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid,” Journal of Bacteriology, vol. 189, no. 6, pp. 2566–2570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Kishino, J. Ogawa, K. Yokozeki, and S. Shimizu, “Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production,” Applied Microbiology and Biotechnology, vol. 84, no. 1, pp. 87–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. J. R. Swann, E. J. Want, F. M. Geier et al., “Systemic gut microbial modulation of bile acid metabolism in host tissue compartments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 4523–4530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. A. B. Sahakian, S. R. Jee, and M. Pimentel, “Methane and the gastrointestinal tract,” Digestive Diseases and Sciences, vol. 55, no. 8, pp. 2135–2143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Marquet, S. H. Duncan, C. Chassard, A. Bernalier-Donadille, and H. J. Flint, “Lactate has the potential to promote hydrogen sulphide formation in the human colon,” FEMS Microbiology Letters, vol. 299, no. 2, pp. 128–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Tedelind, F. Westberg, M. Kjerrulf, and A. Vidal, “Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease,” World Journal of Gastroenterology, vol. 13, no. 20, pp. 2826–2832, 2007. View at Google Scholar · View at Scopus
  103. S. H. Al-Lahham, H. Roelofsen, M. Priebe et al., “Regulation of adipokine production in human adipose tissue by propionic acid,” European Journal of Clinical Investigation, vol. 40, no. 5, pp. 401–407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Fukae, Y. Amasaki, Y. Yamashita et al., “Butyrate suppresses tumor necrosis factor α production by regulating specific messenger RNA degradation mediated through a cis-acting AU-rich element,” Arthritis and Rheumatism, vol. 52, no. 9, pp. 2697–2707, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. M. D. Säemann, G. A. Böhmig, C. H. Osterreicher et al., “Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production,” The FASEB Journal, vol. 14, no. 15, pp. 2380–2382, 2000. View at Google Scholar · View at Scopus
  106. K. M. Maslowski, A. T. Vieira, A. Ng et al., “Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43,” Nature, vol. 461, no. 7268, pp. 1282–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Barcelo, J. Claustre, F. Moro, J. A. Chayvialle, J. C. Cuber, and P. Plaisancié, “Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon,” Gut, vol. 46, no. 2, pp. 218–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  108. E. Gaudier, A. Jarry, H. M. Blottière et al., “Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose,” The American Journal of Physiology, vol. 287, no. 6, pp. G1168–G1174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Bordin, F. D'Atri, L. Guillemot, and S. Citi, “Histone deacetylase inhibitors up-regulate the expression of tight junction proteins,” Molecular Cancer Research, vol. 2, no. 12, pp. 692–701, 2004. View at Google Scholar · View at Scopus
  110. L. Peng, Z. He, W. Chen, I. R. Holzman, and J. Lin, “Effects of butyrate on intestinal barrier function in a caco-2 cell monolayer model of intestinal barrier,” Pediatric Research, vol. 61, no. 1, pp. 37–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Fukuda, H. Toh, K. Hase et al., “Bifidobacteria can protect from enteropathogenic infection through production of acetate,” Nature, vol. 469, no. 7331, pp. 543–547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. T. Suzuki, S. Yoshida, and H. Hara, “Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability,” The British Journal of Nutrition, vol. 100, no. 2, pp. 297–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Kondo, M. Kishi, T. Fushimi, S. Ugajin, and T. Kaga, “Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 8, pp. 1837–1843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, “AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism,” Cell Metabolism, vol. 1, no. 1, pp. 15–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Sakakibara, T. Yamauchi, Y. Oshima, Y. Tsukamoto, and T. Kadowaki, “Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice,” Biochemical and Biophysical Research Communications, vol. 344, no. 2, pp. 597–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. Z. Gao, J. Yin, J. Zhang et al., “Butyrate improves insulin sensitivity and increases energy expenditure in mice,” Diabetes, vol. 58, no. 7, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Grootaert, T. van de Wiele, I. van Roosbroeck et al., “Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines,” Environmental Microbiology, vol. 13, no. 7, pp. 1778–1789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Alex, K. Lange, T. Amolo et al., “Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ,” Molecular and Cellular Biology, vol. 33, no. 7, pp. 1303–1316, 2013. View at Publisher · View at Google Scholar
  119. Y. H. Hong, Y. Nishimura, D. Hishikawa et al., “Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43,” Endocrinology, vol. 146, no. 12, pp. 5092–5099, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. C. J. Small and S. R. Bloom, “Gut hormones and the control of appetite,” Trends in Endocrinology and Metabolism, vol. 15, no. 6, pp. 259–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. O. B. Chaudhri, V. Salem, K. G. Murphy, and S. R. Bloom, “Gastrointestinal satiety signals,” Annual Review of Physiology, vol. 70, pp. 239–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. Y. Xiong, N. Miyamoto, K. Shibata et al., “Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 4, pp. 1045–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. K. R. Freeland and T. M. S. Wolever, “Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α,” The British Journal of Nutrition, vol. 103, no. 3, pp. 460–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. C. A. Baile, “Metabolites as feedbacks for control of feed intake and receptor sites in goats and sheep,” Physiology and Behavior, vol. 7, no. 6, pp. 819–826, 1971. View at Google Scholar · View at Scopus
  125. M. H. Anil and J. M. Forbes, “Feeding in sheep during intraportal infusions of short-chain fatty acids and the effect of liver denervation,” Journal of Physiology, vol. 298, pp. 407–414, 1980. View at Google Scholar · View at Scopus
  126. H. V. Lin, A. Frassetto, E. J. Kowalik Jr. et al., “Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms,” PLoS ONE, vol. 7, no. 4, Article ID e35240, 2012. View at Publisher · View at Google Scholar
  127. R. M. A. J. Ruijschop, A. E. M. Boelrijk, and M. C. T. Giffel, “Satiety effects of a dairy beverage fermented with propionic acid bacteria,” International Dairy Journal, vol. 18, no. 9, pp. 945–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Zhou, M. Hegsted, K. L. McCutcheon et al., “Peptide YY and proglucagon mRNA expression patterns and regulation in the gut,” Obesity, vol. 14, no. 4, pp. 683–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. B. S. Samuel, A. Shaito, T. Motoike et al., “Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16767–16772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Membrez, F. Blancher, M. Jaquet et al., “Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice,” The FASEB Journal, vol. 22, no. 7, pp. 2416–2426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. C. J. Chou, M. Membrez, and F. Blancher, “Gut decontamination with norfloxacin and ampicillin enhances insulin sensitivity in mice,” Nestle Nutrition Workshop Series: Pediatric Program, vol. 62, pp. 127–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. I. Cho, S. Yamanishi, L. Cox et al., “Antibiotics in early life alter the murine colonic microbiome and adiposity,” Nature, vol. 488, no. 7413, pp. 621–626, 2012. View at Publisher · View at Google Scholar
  133. G. Ternak, “Antibiotics may act as growth/obesity promoters in humans as an inadvertent result of antibiotic pollution?” Medical Hypotheses, vol. 64, no. 1, pp. 14–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Caselli, F. Cassol, G. Calò, J. Holton, G. Zuliani, and A. Gasbarrini, “Actual concept of “probiotics”: is it more functional to science or business?” World Journal of Gastroenterology, vol. 19, no. 10, pp. 1527–1540, 2013. View at Publisher · View at Google Scholar
  135. L. Macia, A. N. Thorburn, L. C. Binge et al., “Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases,” Immunological Reviews, vol. 245, no. 1, pp. 164–176, 2012. View at Publisher · View at Google Scholar
  136. N. Takemura, T. Okubo, and K. Sonoyama, “Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed high-fat diet,” Experimental Biology and Medicine, vol. 235, no. 7, pp. 849–856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. Y. Kadooka, M. Sato, K. Imaizumi et al., “Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial,” European Journal of Clinical Nutrition, vol. 64, no. 6, pp. 636–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. A. S. Andreasen, N. Larsen, T. Pedersen-Skovsgaard et al., “Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects,” The British Journal of Nutrition, vol. 104, no. 12, pp. 1831–1838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. R. Luoto, M. Kalliomäki, K. Laitinen, and E. Isolauri, “The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years,” International Journal of Obesity, vol. 34, no. 10, pp. 1531–1537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. L. Aronsson, Y. Huang, P. Parini et al., “Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4),” PLoS ONE, vol. 5, no. 9, Article ID e13087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. J. M. Uronis, J. C. Arthur, T. Keku et al., “Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis,” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 289–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. R. Mennigen, K. Nolte, E. Rijcken et al., “Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis,” The American Journal of Physiology, vol. 296, no. 5, pp. G1140–G1149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Mencarelli, S. Cipriani, B. Renga et al., “VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation,” PLoS ONE, vol. 7, no. 9, Article ID e45425, 2012. View at Publisher · View at Google Scholar
  144. C. Alberda, L. Gramlich, J. Meddings et al., “Effects of probiotic therapy in critically ill patients: a randomized, double-blind, placebo-controlled trial,” The American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 816–823, 2007. View at Google Scholar · View at Scopus
  145. X. Ma, J. Hua, and Z. Li, “Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells,” Journal of Hepatology, vol. 49, no. 5, pp. 821–830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Rakoff-Nahoum, J. Paglino, F. Eslami-Varzaneh, S. Edberg, and R. Medzhitov, “Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis,” Cell, vol. 118, no. 2, pp. 229–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Resta-Lenert and K. E. Barrett, “Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC),” Gut, vol. 52, no. 7, pp. 988–997, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. A. A. Zyrek, C. Cichon, S. Helms, C. Enders, U. Sonnenborn, and M. A. Schmidt, “Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair,” Cellular Microbiology, vol. 9, no. 3, pp. 804–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Pineiro, N. G. Asp, G. Reid et al., “FAO Technical meeting on prebiotics,” Journal of Clinical Gastroenterology, vol. 42, supplement 3, part 2, pp. S156–S159, 2008. View at Google Scholar · View at Scopus
  150. A. M. Bakker-Zierikzee, E. A. F. van Tol, H. Kroes, M. S. Alles, F. J. Kok, and J. G. Bindels, “Faecal SIgA secretion in infants fed on pre- or probiotic infant formula,” Pediatric Allergy and Immunology, vol. 17, no. 2, pp. 134–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. F. Campeotto, A. Suau, N. Kapel et al., “A fermented formula in pre-term infants: clinical tolerance, gut microbiota, down-regulation of faecal calprotectin and up-regulation of faecal secretory IgA,” The British Journal of Nutrition, vol. 105, no. 12, pp. 1843–1851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. P. D. Cani, C. Knauf, M. A. Iglesias, D. J. Drucker, N. M. Delzenne, and R. Burcelin, “Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor,” Diabetes, vol. 55, no. 5, pp. 1484–1490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. P. D. Cam, A. M. Neyrinck, N. Maton, and N. M. Delzenne, “Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide,” Obesity Research, vol. 13, no. 6, pp. 1000–1007, 2005. View at Google Scholar · View at Scopus
  154. C. Daubioul, N. Rousseau, R. Demeure et al., “Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats,” Journal of Nutrition, vol. 132, no. 5, pp. 967–973, 2002. View at Google Scholar · View at Scopus
  155. P. D. Cani, A. M. Neyrinck, F. Fava et al., “Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia,” Diabetologia, vol. 50, no. 11, pp. 2374–2383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  156. S. A. Abrams, I. J. Griffin, K. M. Hawthorne, and K. J. Ellis, “Effect of prebiotic supplementation and calcium intake on body mass index,” Journal of Pediatrics, vol. 151, no. 3, pp. 293–298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Genta, W. Cabrera, N. Habib et al., “Yacon syrup: beneficial effects on obesity and insulin resistance in humans,” Clinical Nutrition, vol. 28, no. 2, pp. 182–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Roberfroid, G. R. Gibson, L. Hoyles et al., “Prebiotic effects: metabolic and health benefits,” The British Journal of Nutrition, vol. 104, supplement 2, pp. S1–S63, 2010. View at Publisher · View at Google Scholar
  159. P. D. Cani, S. Hoste, Y. Guiot, and N. M. Delzenne, “Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats,” The British Journal of Nutrition, vol. 98, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. N. M. Delzenne, P. D. Cani, C. Daubioul, and A. M. Neyrinck, “Impact of inulin and oligofructose on gastrointestinal peptides,” The British Journal of Nutrition, vol. 93, pp. S157–S161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  161. J. M. Gee and I. T. Johnson, “Dietary lactitol fermentation increases circulating peptide YY and glucagon-like peptide-1 in rats and humans,” Nutrition, vol. 21, no. 10, pp. 1036–1043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. A. A. Aziz, L. S. Kenney, B. Goulet, and E. S. Abdel-Aal, “Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats,” Journal of Nutrition, vol. 139, no. 10, pp. 1881–1889, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. M. J. Keenan, J. Zhou, K. L. McCutcheon et al., “Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat,” Obesity, vol. 14, no. 9, pp. 1523–1534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. L. Shen, M. J. Keenan, R. J. Martin et al., “Dietary resistant starch increases hypothalamic POMC expression in rats,” Obesity, vol. 17, no. 1, pp. 40–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. J. Zhou, R. J. Martin, R. T. Tulley et al., “Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents,” The American Journal of Physiology, vol. 295, no. 5, pp. E1160–E1166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. J. A. Parnell and R. A. Reimer, “Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults,” The American Journal of Clinical Nutrition, vol. 89, no. 6, pp. 1751–1759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. J. Tarini and T. M. S. Wolever, “The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects,” Applied Physiology, Nutrition and Metabolism, vol. 35, no. 1, pp. 9–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. P. D. Cani, S. Possemiers, T. van de Wiele et al., “Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability,” Gut, vol. 58, no. 8, pp. 1091–1103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. H. Zhang, J. K. DiBaise, A. Zuccolo et al., “Human gut microbiota in obesity and after gastric bypass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2365–2370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. A. P. Liou, M. Paziuk, J. M. Luevano Jr., S. Machineni, P. J. Turnbaugh, and L. M. Kaplan, “Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity,” Science Translational Medicine, vol. 5, no. 178, Article ID 178ra141, 2013. View at Publisher · View at Google Scholar