Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 171839, 9 pages
http://dx.doi.org/10.1155/2014/171839
Research Article

Anti-Inflammatory and Antinociceptive Activities of Bufalin in Rodents

1Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
2Department of Orthopaedic Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
3The Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China

Received 14 November 2013; Revised 10 January 2014; Accepted 12 January 2014; Published 26 February 2014

Academic Editor: Eduardo López-Collazo

Copyright © 2014 Lili Wen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Krenn and B. Kopp, “Bufadienolides from animal and plant sources,” Phytochemistry, vol. 48, no. 1, pp. 1–29, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Qi, A. Li, Y. Inagaki et al., “Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor,” International Immunopharmacology, vol. 11, no. 3, pp. 342–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. K. K. Chen and A. Kovaríková, “Pharmacology and toxicology of toad venom,” Journal of Pharmaceutical Sciences, vol. 56, no. 12, pp. 1535–1541, 1967. View at Google Scholar · View at Scopus
  4. Z. Wang, J. Wen, J. Zhang, M. Ye, and D. Guo, “Simultaneous determination of four bufadienolides in human liver by high-performance liquid chromatography,” Biomedical Chromatography, vol. 18, no. 5, pp. 318–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Xie, X. Y. Liu, S. Yu et al., “Cardiac glycosides block cancer growth through HIF-1α and NF-κB-mediated Plk1,” Carcinogenesis, vol. 34, no. 8, pp. 1870–1880, 2013. View at Google Scholar
  6. S. Numazawa, M. Shinoki, H. Ito, T. Yoshida, and Y. Kuroiwa, “Involvement of Na+,K+-ATPase inhibition in K562 cell differentiation induced by bufalin,” Journal of Cellular Physiology, vol. 160, no. 1, pp. 113–120, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Huang, Y. Cao, W. Wei et al., “Targeting poly (ADP-ribose) polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells,” PLoS ONE, vol. 8, no. 6, Article ID e66130, 2013. View at Google Scholar
  8. M. Watabe, K. Ito, Y. Masuda, S. Nakajo, and K. Nakaya, “Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells,” Oncogene, vol. 16, no. 6, pp. 779–787, 1998. View at Google Scholar · View at Scopus
  9. N. Kawazoe, M. Watabe, Y. Masuda, S. Nakajo, and K. Nakaya, “Tiam1 is involved in the regulation of bufalin-induced apoptosis in human leukemia cells,” Oncogene, vol. 18, no. 15, pp. 2413–2421, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Yeh, W. J. Huang, S. Kan, and P. S. Wang, “Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells,” Prostate, vol. 54, no. 2, pp. 112–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yin, J. Shen, W. Su et al., “Bufalin induces apoptosis in human osteosarcoma U-2OS and U-2OS methotrexate300-resistant cell lines,” Acta Pharmacologica Sinica, vol. 28, no. 5, pp. 712–720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. X. B. Xie, J. Q. Yin, L. L. Wen et al., “Critical role of heat shock protein 27 in bufalin-induced apoptosis in human osteosarcomas: a proteomic-based research,” PLoS ONE, vol. 7, no. 10, Article ID e47375, 2012. View at Google Scholar
  13. Y. Dong, S. Yin, J. Li, C. Jiang, M. Ye, and H. Hu, “Bufadienolide compounds sensitize human breast cancer cells to TRAIL-induced apoptosis via inhibition of STAT3/Mcl-1 pathway,” Apoptosis, vol. 16, no. 4, pp. 394–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Li, X. Qu, K. Hou et al., “PI3K/Akt is involved in bufalin-induced apoptosis in gastric cancer cells,” Anti-Cancer Drugs, vol. 20, no. 1, pp. 59–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Qi, Y. Inagaki, B. Gao et al., “Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways,” Cancer Science, vol. 102, no. 5, pp. 951–958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Ye, S. Chen, and T. Maniatis, “Cardiac glycosides are potent inhibitors of interferon-β gene expression,” Nature Chemical Biology, vol. 7, no. 1, pp. 25–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rahman and F. Fazal, “Blocking NF-κB: an inflammatory issue,” Proceedings of the American Thoracic Society, vol. 8, no. 6, pp. 497–503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. A. Ribeiro, M. L. Vale, S. M. Thomazzi et al., “Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice,” European Journal of Pharmacology, vol. 387, no. 1, pp. 111–118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zheng, J. Gong, A. Zhang et al., “Attenuation of glomerular filtration barrier damage in adriamycin-induced nephropathic rats with bufalin: an antiproteinuric agent,” Journal of Steroid Biochemistry and Molecular Biology, vol. 129, no. 3–5, pp. 107–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Rodrigues-Mascarenhas, D. I. B. de Vasconcelos, J. A. Leite et al., “Anti-inflammatory and antinociceptive activity of ouabain in mice,” Mediators of Inflammation, vol. 2011, Article ID 912925, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Ihenetu, R. Espinosa, R. de Leon, G. Planas, A. Perez-Pinero, and L. Waldbeser, “Digoxin and digoxin-like immunoreactive factors (DLIF) modulate the release of pro-inflammatory cytokines,” Inflammation Research, vol. 57, no. 11, pp. 519–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Vallabhapurapu and M. Karin, “Regulation and function of NF-κB transcription factors in the immune system,” Annual Review of Immunology, vol. 27, pp. 693–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Nathan, “Points of control in inflammation,” Nature, vol. 420, no. 6917, pp. 846–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. C. J. Morris, “Carrageenan-induced paw edema in the rat and mouse,” Methods in Molecular Biology, vol. 225, pp. 115–121, 2003. View at Google Scholar · View at Scopus
  25. D. Le Bars, M. Gozariu, and S. W. Cadden, “Animal models of nociception,” Pharmacological Reviews, vol. 53, no. 4, pp. 597–652, 2001. View at Google Scholar · View at Scopus
  26. E. A. Costa, R. C. Lino, M. N. Gomes et al., “Anti-inflammatory and antinociceptive activities of LQFM002—a 4-nerolidylcatechol derivative,” Life Sciences, vol. 92, no. 3, pp. 237–244, 2013. View at Google Scholar
  27. J. A. Rodrigues, E. S. Vanderlei, L. M. Silva et al., “Antinociceptive and anti-inflammatory activities of a sulfated polysaccharide isolated from the green seaweed Caulerpa cupressoides,” Pharmacological Reports, vol. 64, no. 2, pp. 282–292, 2012. View at Google Scholar
  28. M. Shibata, T. Ohkubo, H. Takahashi, and R. Inoki, “Modified formalin test: characteristic biphasic pain response,” Pain, vol. 38, no. 3, pp. 347–352, 1989. View at Google Scholar · View at Scopus
  29. G. Munro, “Dopamine D(1) and D(2) receptor agonism enhances antinociception mediated by the serotonin and noradrenaline reuptake inhibitor duloxetine in the rat formalin test,” European Journal of Pharmacology, vol. 575, no. 1–3, pp. 66–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. V. M. Nascimento, P. M. Galdino, I. F. Florentino et al., “Antinociceptive effect of Lafoensia pacari A. St.-Hil. independent of anti-inflammatory activity of ellagic acid,” Journal of Natural Medicines, vol. 65, no. 3-4, pp. 448–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Nemirovsky, L. Chen, V. Zelman, and I. Jurna, “The antinociceptive effect of the combination of spinal morphine with systemic morphine or buprenorphine,” Anesthesia and Analgesia, vol. 93, no. 1, pp. 197–203, 2001. View at Google Scholar · View at Scopus
  32. W. Zeng, X. Chen, and S. Dohi, “Antinociceptive synergistic interaction between clonidine and ouabain on thermal nociceptive tests in the rat,” Journal of Pain, vol. 8, no. 12, pp. 983–988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Zeng, S. Dohi, H. Shimonaka, and T. Asano, “Spinal antinociceptive action of Na+-K+ pump inhibitor ouabain and its interaction with morphine and lidocaine in rats,” Anesthesiology, vol. 90, no. 2, pp. 500–508, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. R. N. Walsh and R. A. Cummins, “The open-field test: a critical review,” Psychological Bulletin, vol. 83, no. 3, pp. 482–504, 1976. View at Publisher · View at Google Scholar · View at Scopus