Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 243786, 12 pages
http://dx.doi.org/10.1155/2014/243786
Review Article

CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

1Centro de Terapia Celular e Molecular (CTCMol), UNIFESP-Escola Paulista de Medicina, Rua Mirassol 207, São Paulo 04044-010, SP, Brazil
2Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Mirassol 207, São Paulo 04044-010, SP, Brazil
3Departamento de Biociências, Instituto de Saúde e Sociedade, UNIFESP, Campus Baixada Santista, Santos 11015-020, SP, Brazil

Received 23 April 2014; Accepted 15 June 2014; Published 1 July 2014

Academic Editor: Edecio Cunha-Neto

Copyright © 2014 Fernando dos Santos Virgilio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Petherick, “Country by country,” Nature, vol. 465, no. 7301, pp. S10–S11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. Schofield, J. Jannin, and R. Salvatella, “The future of Chagas disease control,” Trends in Parasitology, vol. 22, no. 12, pp. 583–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Coura and P. A. Viñas, “Chagas disease: a new worldwide challenge,” Nature, vol. 465, no. 7301, pp. S6–S7, 2010. View at Publisher · View at Google Scholar
  4. B. Y. Lee, K. M. Bacon, D. L. Connor, A. M. Willig, and R. R. Bailey, “The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America,” PLoS Neglected Tropical Diseases, vol. 4, no. 12, article e916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Junqueira, B. Caetano, D. C. Bartholomeu et al., “The endless race between Trypanosoma cruzi and host immunity: Lessons for and beyond Chagas disease,” Expert Reviews in Molecular Medicine, vol. 12, article e29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Tarleton, “Chagas disease: a role for autoimmunity?” Trends in Parasitology, vol. 19, no. 10, pp. 447–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Maya, M. Orellana, J. Ferreira, U. Kemmerling, R. López-Muñoz, and A. Morello, “Chagas disease: present status of pathogenic mechanisms and chemotherapy,” Biological Research, vol. 43, no. 3, pp. 323–331, 2010. View at Google Scholar · View at Scopus
  8. M. D. Lewis, F. A. Fortes, M. C. Taylor et al., “Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection,” Cellular Microbiology, 2014. View at Publisher · View at Google Scholar
  9. I. C. Almeida, S. R. Milani, P. A. J. Gorin, and L. R. Travassos, “Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-α-galactosyl antibodies,” Journal of Immunology, vol. 146, no. 7, pp. 2394–2400, 1991. View at Google Scholar · View at Scopus
  10. A. L. Andrade, C. M. Martelli, R. M. Oliveira et al., “Short report: benznidazole efficacy among Trypanosoma cruzi-infected adolescents after a six-year follow-up,” The American Journal of Tropical Medicine and Hygiene, vol. 71, no. 5, pp. 594–597, 2004. View at Google Scholar · View at Scopus
  11. V. L. Pereira-Chioccola, A. Acosta-Serrano, I. C. de Almeida et al., “Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-α-galactosyl antibodies,” Journal of Cell Science, vol. 113, part 7, pp. 1299–1307, 2000. View at Google Scholar · View at Scopus
  12. W. O. Dutra and K. J. Gollob, “Current concepts in immunoregulation and pathology of human Chagas disease,” Current Opinion in Infectious Diseases, vol. 21, no. 3, pp. 287–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Rocha, A. C. Oliveira de Meneses, A. Moreira da Silva et al., “Pathology of patients with Chagas' disease and acquired immunodeficiency syndrome,” The American Journal of Tropical Medicine and Hygiene, vol. 50, no. 3, pp. 261–268, 1994. View at Google Scholar · View at Scopus
  14. A. M. C. Sartori, J. Eluf Neto, E. Visone Nunes et al., “Trypanosoma cruzi parasitemia in chronic Chagas disease: Comparison between human immunodeficiency virus (HIV)-positive and HIV-negative patients,” Journal of Infectious Diseases, vol. 186, no. 6, pp. 872–875, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. S. Gomes, L. M. G. Bahia-Oliveira, M. O. C. Rocha, O. A. Martins-Filho, G. Gazzinelli, and R. Correa-Oliveira, “Evidence that development of severe cardiomyopathy in human Chagas' disease is due to a Th1-specific immune response,” Infection and Immunity, vol. 71, no. 3, pp. 1185–1193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. S. Gomes, L. M. G. Bahia-Oliveira, M. O. C. Rocha et al., “Type 1 chemokine receptor expression in Chagas' disease correlates with morbidity in cardiac patients,” Infection and Immunity, vol. 73, no. 12, pp. 7960–7966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Ramasawmy, E. Cunha-Neto, K. C. Faé et al., “BAT1, a putative anti-inflammatory gene, is associated with chronic chagas cardiomyopathy,” Journal of Infectious Diseases, vol. 193, no. 10, pp. 1394–1399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. C. Costa, M. O. da Costa Rocha, P. R. Moreira et al., “Functional IL-10 gene polymorphism is associated with Chagas disease cardiomyopathy,” Journal of Infectious Diseases, vol. 199, no. 3, pp. 451–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. F. de Araújo, D. M. Vitelli-Avelar, A. Teixeira-Carvalho et al., “Regulatory T cells phenotype in different clinical forms of chagas' disease,” PLoS Neglected Tropical Diseases, vol. 5, no. 5, article e992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. A. Laucella, M. Postan, D. Martin et al., “Frequency of interferon-γ-producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease,” Journal of Infectious Diseases, vol. 189, no. 5, pp. 909–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. M. Magalhães, F. N. Villani, M. C. Nunes, K. J. Gollob, M. O. Rocha, and W. O. Dutra, “High interleukin 17 expression is correlated with better cardiac function in human Chagas disease,” The Journal of Infectious Diseases, vol. 207, no. 4, pp. 661–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Argüello, M. C. Albareda, M. G. Alvarez et al., “Inhibitory receptors are expressed by Trypanosoma cruzi—specific effector T cells and in hearts of subjects with chronic Chagas disease,” PloS ONE, vol. 7, no. 5, p. e35966, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Rodrigues, A. C. Oliveira, and M. Bellio, “The immune response to Trypanosoma cruzi: role of toll-like receptors and perspectives for vaccine development,” Journal of Parasitology Research, vol. 2012, Article ID 507874, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. G. K. Silva, F. R. S. Gutierrez, P. M. M. Guedes et al., “Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection,” Journal of Immunology, vol. 184, no. 3, pp. 1148–1152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. B. Boscardin, A. C. T. Torrecilhas, R. Manarin et al., “Chagas' disease: an update on immune mechanisms and therapeutic strategies,” Journal of Cellular and Molecular Medicine, vol. 14, no. 6, pp. 1373–1384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. L. Tarleton, M. J. Grusby, M. Postan, and L. H. Glimcher, “Trypanosoma cruzi infection in MHC-deficient mice: Further evidence for the role of both class I- and class II-restricted T cells in immune resistance and disease,” International Immunology, vol. 8, no. 1, pp. 13–22, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Tzelepis, B. C. G. de Alencar, M. L. O. Penido, R. T. Gazzinelli, P. M. Persechini, and M. M. Rodrigues, “Distinct kinetics of effector CD8+ cytotoxic T cells after infection with Trypanosoma cruzi in naïve or vaccinated mice,” Infection and Immunity, vol. 74, no. 4, pp. 2477–2481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. B. C. G. De Alencar, P. M. Persechini, F. A. Haolla et al., “Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination,” Infection and Immunity, vol. 77, no. 10, pp. 4383–4395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Müller, V. Sobek, S. Balkow et al., “Concerted action of perforin and granzymes is critical for the elimination of Trypanosoma cruzi from mouse tissues, but prevention of early host death is in addition dependent on the FasL/Fas pathway,” European Journal of Immunology, vol. 33, no. 1, pp. 70–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Une, J. Andersson, M.-. Eloranta, D. Sunnemark, R. A. Harris, and A. Örn, “Enhancement of natural killer (NK) cell cytotoxicity and induction of NK cell-derived interferon-gamma (IFN-γ) display different kinetics during experimental infection with Trypanosoma cruzi,” Clinical and Experimental Immunology, vol. 121, no. 3, pp. 499–505, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. L. Higuchi, L. A. Benvenuti, R. M. Martins, and M. Metzger, “Pathophysiology of the heart in Chagas' disease: current status and new developments,” Cardiovascular Research, vol. 60, no. 1, pp. 96–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. De Lourdes Higuchi, P. S. Gutierrez, V. D. Aiello et al., “Immunohistochemical characterization of infiltrating cells in human chronic chagasic myocarditis: comparison with myocardial rejection process,” Virchows Archiv—a Pathological Anatomy and Histopathology, vol. 423, no. 3, pp. 157–160, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. D. D'Avila Reis, R. T. Gazzinelli, G. Gazzinelli, and D. G. Colley, “Antibodies to Trypanosoma cruzi express idiotypic patterns that can differentiate between patients with asymptomatic or severe Chagas' disease,” Journal of Immunology, vol. 150, no. 4, pp. 1611–1618, 1993. View at Google Scholar · View at Scopus
  34. S. G. Fonseca, H. Moins-Teisserenc, E. Clave et al., “Identification of multiple HLA-A∗0201-restricted cruzipain and FL-160 CD8+ epitopes recognized by T cells from chronically Trypanosoma cruzi-infected patients,” Microbes and Infection, vol. 7, no. 4, pp. 688–697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. C. Albareda, S. A. Laucella, M. G. Alvarez et al., “Trypanosoma cruzi modulates the profile of memory CD8+ T cells in chronic Chagas' disease patients,” International Immunology, vol. 18, no. 3, pp. 465–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. G. Alvarez, M. Postan, D. B. Weatherly et al., “HLA class I-T cell epitopes from trans-sialidase proteins reveal functionally distinct subsets of CD8+ T cells in chronic Chagas disease,” PLoS Neglected Tropical Diseases, vol. 2, no. 9, article e288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. M. Rodrigues, M. Ribeirão, V. Pereira-Chioccola, L. Renia, and F. Costa, “Predominance of CD4 Th1 and CD8 Tc1 cells revealed by characterization of the cellular immune response generated by immunization with a DNA vaccine containing a Trypanosoma cruzi gene,” Infection and Immunity, vol. 67, no. 8, pp. 3855–3863, 1999. View at Google Scholar · View at Scopus
  38. A. F. S. Araújo, B. C. G. de Alencar, J. R. C. Vasconcelos et al., “CD8+-T-cell-dependent control of Trypanosoma cruzi infection in a highly susceptible mouse strain after immunization with recombinant proteins based on amastigote surface protein 2,” Infection and Immunity, vol. 73, no. 9, pp. 6017–6025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. L. Martin, D. B. Weatherly, S. A. Laucella et al., “CD8+ T-Cell responses to Trypanosoma cruzi are highly focused on strain-variant trans-sialidase epitopes,” PLoS Pathogens, vol. 2, no. 8, p. e77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. H. Fontanella, K. De Vusser, W. Laroy et al., “Immunization with an engineered mutant trans-sialidase highly protects mice from experimental Trypanosoma cruzi infection: a vaccine candidate,” Vaccine, vol. 26, no. 19, pp. 2322–2334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. D. F. Hoft, C. S. Eickhoff, O. K. Giddings, J. R. C. Vasconcelos, and M. M. Rodrigues, “Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic Trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming,” Journal of Immunology, vol. 179, no. 10, pp. 6889–6900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. I. Cazarla, F. M. Frank, P. D. Becker et al., “Redirection of the immune response to the functional catalytic domain of the cystein proteinase cruzipain improves protective immunity against trypanosoma cruzi infection,” The Journal of Infectious Diseases, vol. 202, no. 1, pp. 136–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. B. C. G. de Alencar, A. F. S. Araújo, M. L. O. Penido, R. T. Gazzinelli, and M. M. Rodrigues, “Cross-priming of long lived protective CD8+ T cells against Trypanosoma cruzi infection: importance of a TLR9 agonist and CD4+ T cells,” Vaccine, vol. 25, no. 32, pp. 6018–6027, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Wizel, N. Garg, and R. L. Tarleton, “Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection,” Infection and Immunity, vol. 66, no. 11, pp. 5073–5081, 1998. View at Google Scholar · View at Scopus
  45. E. Dumonteil, J. Escobedo-Ortegon, N. Reyes-Rodriguez, A. Arjona-Torres, and M. J. Ramirez-Sierra, “Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice,” Infection and Immunity, vol. 72, no. 1, pp. 46–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Zapata-Estrella, C. Hummel-Newell, G. Sanchez-Burgos et al., “Control of Trypanosoma cruzi infection and changes in T-cell populations induced by a therapeutic DNA vaccine in mice,” Immunology Letters, vol. 103, no. 2, pp. 186–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Katae, Y. Miyahira, K. Takeda et al., “Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy,” Infection and Immunity, vol. 70, no. 9, pp. 4833–4840, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Miyahira, H. Akiba, M. Katae et al., “Cutting edge: a potent adjuvant effect of ligand to receptor activator of NF-kappa B gene for inducing antigen-specific CD8+ T cell response by DNA and viral vector vaccination,” Journal of Immunology, vol. 171, no. 12, pp. 6344–6348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Costa, G. Franchin, V. L. Pereira-Chioccola, M. Ribeirão, S. Schenkman, and M. M. Rodrigues, “Immunization with a plasmid DNA containing the gene of trans-sialidase reduces Trypanosoma cruzi infection in mice,” Vaccine, vol. 16, no. 8, pp. 768–774, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. A. E. Fujimura, S. S. Kinoshita, V. L. Pereira-Chioccola, and M. M. Rodrigues, “DNA sequences encoding CD4+ and CD8+ T-cell epitopes are important for efficient protective immunity induced by DNA vaccination with a Trypanosoma cruzi gene,” Infection and Immunity, vol. 69, no. 9, pp. 5477–5486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Garg and R. L. Tarleton, “Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection,” Infection and Immunity, vol. 70, no. 10, pp. 5547–5555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. S. B. Boscardin, S. S. Kinoshita, A. E. Fujimura, and M. M. Rodrigues, “Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection,” Infection and Immunity, vol. 71, no. 5, pp. 2744–2757, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. B. H. Fralish and R. L. Tarleton, “Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection,” Vaccine, vol. 21, no. 21-22, pp. 3070–3080, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. J. R. Vasconcelos, M. I. Hiyane, C. R. F. Marinho et al., “Protective immunity against Trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase,” Human Gene Therapy, vol. 15, no. 9, pp. 878–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Claser, N. M. Espíndola, G. Sasso, A. J. Vaz, S. B. Boscardin, and M. M. Rodrigues, “Effector -like CD8+ T cells in the memory population mediate potent protective immunity,” Microbes and Infection, vol. 9, no. 8, pp. 1011–1019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. E. L. V. Silveira, C. Claser, F. A. B. Haolla, L. G. Zanella, and M. M. Rodrigues, “Novel protective antigens expressed by Trypanosoma cruzi amastigotes provide immunity to mice highly susceptible to Chagas' disease,” Clinical and Vaccine Immunology, vol. 15, no. 8, pp. 1292–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Sepulveda, M. Hontebeyrie, P. Liegeard, A. Mascilli, and K. A. Norris, “DNA-based immunization with Trypanosoma cruzi complement regulatory protein elicits complement lytic antibodies and confers protection against Trypanosoma cruzi infection,” Infection and Immunity, vol. 68, no. 9, pp. 4986–4991, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Planelles, M. C. Thomas, C. Alonso, and M. C. López, “DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection,” Infection and Immunity, vol. 69, no. 10, pp. 6558–6563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. V. Bhatia and N. J. Garg, “Previously unrecognized vaccine candidates control Trypanosoma cruzi infection and immunopathology in mice,” Clinical and Vaccine Immunology, vol. 15, no. 8, pp. 1158–1164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. V. Machado, J. E. Cardoso, C. Claser, M. M. Rodrigues, R. T. Gazzinelli, and O. Bruna-Romero, “Long-term protective immunity induced against Trypanosoma cruzi infection after vaccination with recombinant adenoviruses encoding amastigote surface protein-2 and trans-sialidase,” Human Gene Therapy, vol. 17, no. 9, pp. 898–908, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. I. Cazorla, P. D. Becker, F. M. Frank et al., “Oral vaccination with Salmonella enterica as a cruzipain-DNA delivery system confers protective immunity against Trypanosoma cruzi,” Infection and Immunity, vol. 76, no. 1, pp. 324–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. X. Duan, Y. Yonemitsu, B. Chou et al., “Efficient protective immunity against Trypanosoma cruzi infection after nasal vaccination with recombinant Sendai virus vector expressing amastigote surface protein-2,” Vaccine, vol. 27, no. 44, pp. 6154–6159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. T. Nogueira, A. R. Nogueira, M. C. Pereira et al., “Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypanosoma cruzi,” PLoS ONE, vol. 8, no. 3, Article ID e59347, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Miyahira, Y. Takashima, S. Kobayashi et al., “Immune responses against a single CD8+-T-cell epitope induced by virus vector vaccination can successfully control trypanosoma cruzi infection,” Infection and Immunity, vol. 73, no. 11, pp. 7356–7365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. R. Dominguez, J. Ersching, R. Lemos et al., “Re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 contributes to resistance against experimental infection with the protozoan parasite Trypanosoma cruzi,” Vaccine, vol. 30, no. 18, pp. 2882–2891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. R. P. A. Barbosa, B. G. Filho, L. I. D. Santos et al., “Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection,” PLoS ONE, vol. 8, no. 4, Article ID e61795, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Gupta and N. J. Garg, “TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice,” PLoS ONE, vol. 8, no. 3, Article ID e59434, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Gupta, T. S. Silva, J. E. Osizugbo, L. Tucker, H. M. Spratt, and N. J. Garg, “Serum-mediated activation of macrophages reflects TcVac2 vaccine efficacy against chagas disease,” Infection and Immunity, vol. 82, no. 4, pp. 1382–1389, 2014. View at Google Scholar
  69. N. Garg, M. P. Nunes, and R. L. Tarleton, “Delivery by Trypanosoma cruzi of proteins into the MHC class I antigen processing and presentation pathway,” Journal of Immunology, vol. 158, no. 7, pp. 3293–3302, 1997. View at Google Scholar · View at Scopus
  70. A. M. Padilla, L. J. Simpson, and R. L. Tarleton, “Insufficient TLR activation contributes to the slow development of CD8+ T cell responses in Trypanosoma cruzi infection,” Journal of Immunology, vol. 183, no. 2, pp. 1245–1252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Masopust and R. Ahmed, “Reflections on CD8 T-cell activation and memory,” Immunologic Research, vol. 29, no. 1–3, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Tzelepis, B. C. G. de Alencar, M. L. O. Penido et al., “Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance,” The Journal of Immunology, vol. 180, no. 3, pp. 1737–1748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Tzelepis, P. M. Persechini, and M. M. Rodrigues, “Modulation of CD4+ T cell-dependent specific cytotoxic CD8+ T cells differentiation and proliferation by the timing of increase in the pathogen load,” PLoS ONE, vol. 2, no. 4, article e393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. M. Bustamante, L. M. Bixby, and R. L. Tarleton, “Drug-induced cure drives conversion to a stable and protective CD8 + T central memory response in chronic Chagas disease,” Nature Medicine, vol. 14, no. 5, pp. 542–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. R. Vasconcelos, O. Bruña-Romero, A. F. Araújo et al., “Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine,” PLoS Pathogens, vol. 8, no. 5, Article ID e1002699, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. P. O. Rigato, B. C. de Alencar, J. R. C. de Vasconcelos et al., “Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8+ T effector memory cells specific for a human parasite, Trypanosoma cruzi,” Infection and Immunity, vol. 79, no. 5, pp. 2120–2130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. J. R. Vasconcelos, M. R. Dominguez, A. F. Araújo et al., “Relevance of long-lived CD8+T effector memory cells for protective immunity elicited by heterologous prime-boost vaccination,” Frontiers in Immunology, vol. 3, article 358, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Istrail, G. G. Sutton, L. Florea et al., “Whole-genome shotgun assembly and comparison of human genome assemblies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 1916–1921, 2004. View at Google Scholar
  79. J. W. Yewdell, “Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses,” Immunity, vol. 25, no. 4, pp. 533–543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Miyahira, “Trypanosoma cruzi infection from the view of CD8+ T cell immunity—an infection model for developing T cell vaccine,” Parasitology International, vol. 57, no. 1, pp. 38–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. R. L. Tarleton, “Immune system recognition of Trypanosoma cruzi,” Current Opinion in Immunology, vol. 19, no. 4, pp. 430–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. M. M. Rodrigues, B. C. G. de Alencar, C. Claser, and F. Tzelepis, “Immunodominance: a new hypothesis to explain parasite escape and host/parasite equilibrium leading to the chronic phase of Chagas' disease?” Brazilian Journal of Medical and Biological Research, vol. 42, no. 3, pp. 220–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Lanzavecchia, “Lack of fair play in the T cell response,” Nature Immunology, vol. 3, no. 1, pp. 9–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. M. R. Dominguez, E. L. V. Silveira, J. R. C. de Vasconcelos et al., “Subdominant/cryptic CD8 T cell epitopes contribute to resistance against experimental infection with a human protozoan parasite,” PLoS ONE, vol. 6, no. 7, Article ID e22011, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. J. C. Silverio, I. R. Pereira, M. D. C. Cipitelli et al., “CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental trypanosoma cruzi-elicited cardiomyopathy,” PLoS Pathogens, vol. 8, no. 4, Article ID e1002645, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. S. I. Cazorla, F. M. Frank, and E. L. Malchiodi, “Vaccination approaches against Trypanosoma cruzi infection,” Expert Review of Vaccines, vol. 8, no. 7, pp. 921–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. J. C. Vázquez-Chagoyán, S. Gupta, and N. J. Garg, “Vaccine development against Trypanosoma cruzi and Chagas disease,” Advances in Parasitology, vol. 75, pp. 121–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. I. Quijano-Hernandez and E. Dumonteil, “Advances and challenges toward a vaccine against Chagas disease,” Human Vaccines, vol. 7, no. 11, pp. 1184–1191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Dumonteil, M. E. Bottazzi, B. Zhan et al., “Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects,” Expert Review of Vaccines, vol. 11, no. 9, pp. 1043–1055, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. B. C. Pérez and M. A. Basombrío, “Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool.,” Bioengineered, vol. 3, no. 4, pp. 242–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. E. J. Wherry, V. Teichgräber, T. C. Becker et al., “Lineage relationship and protective immunity of memory CD8T cell subsets,” Nature Immunology, vol. 4, no. 3, pp. 225–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. J. R. Vasconcelos, M. R. Dominguez, and R. L. Neves, “Adenovirus vector-induced CD8+ T effector memory cell differentiation and recirculation, but not proliferation, are important for protective immunity against experimental Trypanosoma cruzi infection,” Human Gene Therapy, vol. 25, no. 4, pp. 350–363, Apr 2014. View at Publisher · View at Google Scholar
  93. J. Olson, C. McDonald-Hyman, S. Jameson, and S. Hamilton, “Effector -like CD8+ T cells in the memory population mediate potent protective immunity,” Immunity, vol. 38, no. 6, pp. 1250–1260, 2013. View at Publisher · View at Google Scholar · View at Scopus