Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 354843, 11 pages
http://dx.doi.org/10.1155/2014/354843
Research Article

NF-B/AP-1-Targeted Inhibition of Macrophage-Mediated Inflammatory Responses by Depigmenting Compound AP736 Derived from Natural 1,3-Diphenylpropane Skeleton

1Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
2Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea
3Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh

Received 21 July 2014; Revised 30 September 2014; Accepted 30 September 2014; Published 19 October 2014

Academic Editor: Tânia Silvia Fröde

Copyright © 2014 Van Thai Ha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Zhuang and J. Lyga, “Inflammaging in skin and other tissues—the roles of complement system and macrophage,” Inflammation & Allergy-Drug Targets, vol. 13, no. 3, pp. 153–161, 2014. View at Google Scholar
  2. S. Willenborg and S. A. Eming, “Macrophages—sensors and effectors coordinating skin damage and repair,” Journal der Deutschen Dermatologischen Gesellschaft, vol. 12, no. 3, pp. 214–223, 2014. View at Google Scholar
  3. I. Kurokawa, F. W. Danby, Q. Ju et al., “New developments in our understanding of acne pathogenesis and treatment,” Experimental Dermatology, vol. 18, no. 10, pp. 821–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Kim, “Review of the innate immune response in acne vulgaris: activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses,” Dermatology, vol. 211, no. 3, pp. 193–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Suzuki and C. Ra, “Analysis of the mechanism for the development of allergic skin inflammation and the application for its treatment: aspirin modulation of IgE-dependent mast cell activation: role of aspirin-induced exacerbation of immediate allergy,” Journal of Pharmacological Sciences, vol. 110, no. 3, pp. 237–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Yoshizumi, T. Nakamura, M. Kato et al., “Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT,” Cell Biology International, vol. 32, no. 11, pp. 1405–1411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. I. T. Harvima and G. Nilsson, “Mast cells as regulators of skin inflammation and immunity,” Acta Dermato-Venereologica, vol. 91, no. 6, pp. 644–650, 2011. View at Google Scholar · View at Scopus
  8. R. J. Toncic, J. Lipozencic, I. Martinac, and S. Greguric, “Immunology of allergic contact dermatitis,” Acta Dermatovenerologica Croatica, vol. 19, no. 1, pp. 51–68, 2011. View at Google Scholar
  9. C. Vestergaard, N. Kirstejn, B. Gesser, J. T. Mortensen, K. Matsushima, and C. G. Larsen, “IL-10 augments the IFN-γ and TNF-α induced TARC production in HaCaT cells: a possible mechanism in the inflammatory reaction of atopic dermatitis,” Journal of Dermatological Science, vol. 26, no. 1, pp. 46–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J.-W. Lee, N. H. Kim, J.-Y. Kim et al., “Aromadendrin inhibits lipopolysaccharide-induced nuclear translocation of NF-κB and phosphorylation of JNK in RAW 264.7 macrophage cells,” Biomolecules and Therapeutics, vol. 21, no. 3, pp. 216–221, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Sekine, T. Yumioka, T. Yamamoto et al., “Modulation of TLR4 signaling by a novel adaptor protein signal-transducing adaptor protein-2 in macrophages,” Journal of Immunology, vol. 176, no. 1, pp. 380–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Takeda and S. Akira, “Roles of Toll-like receptors in innate immune responses,” Genes to Cells, vol. 6, no. 9, pp. 733–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. C. K. Youn, S. J. Park, M. Y. Lee et al., “Silibinin inhibits LPS-induced macrophage activation by blocking p38 MAPK in RAW 264.7 cells,” Biomolecules and Therapeutics, vol. 21, no. 4, pp. 258–263, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. E. T. Makino, R. C. Mehta, A. Banga, P. Jain, M. L. Sigler, and S. Sonti, “Evaluation of a hydroquinone-free skin brightening product using in vitro inhibition of melanogenesis and clinical reduction of ultraviolet-induced hyperpigmentation,” Journal of Drugs in Dermatology, vol. 12, supplement 1, no. 3, pp. s16–s20, 2013. View at Google Scholar · View at Scopus
  15. D. Guerrero, “Dermocosmetic management of hyperpigmentations,” Annales de Dermatologie et de Vénéréologie, vol. 139, supplement 4, pp. S166–S169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. H. S. Baek, Y. D. Hong, C. S. Lee et al., “Adamantyl N-benzylbenzamide: new series of depigmentation agents with tyrosinase inhibitory activity,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 5, pp. 2110–2113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. C. S. Lee, W.-H. Jang, M. Park et al., “A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression,” Experimental Dermatology, vol. 22, no. 11, pp. 762–764, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Cho, K. U. Baik, J. H. Jung, and M. H. Park, “In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa,” European Journal of Pharmacology, vol. 398, no. 3, pp. 399–407, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. D. H. Kim, J. H. Chung, J. S. Yoon et al., “Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver,” Journal of Ginseng Research, vol. 37, no. 1, pp. 54–63, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. M.-Y. Kim and J. Y. Cho, “20S-dihydroprotopanaxatriol modulates functional activation of monocytes and macrophages,” Journal of Ginseng Research, vol. 37, no. 3, pp. 300–307, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Duperrier, A. Eljaafari, C. Dezutter-Dambuyant et al., “Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements,” Journal of Immunological Methods, vol. 238, no. 1-2, pp. 119–131, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. G. Lee, W. M. Lee, J. Y. Kim et al., “Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells,” British Journal of Pharmacology, vol. 154, no. 4, pp. 852–863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Y. Cho, D. A. Fox, V. Horejsi et al., “The functional interactions between CD98, β1-integrins, and CD147 in the induction of U937 homotypic aggregation,” Blood, vol. 98, no. 2, pp. 374–382, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. G. Lee, J. Lee, and J. Y. Cho, “Cell-permeable ceramides act as novel regulators of U937 cell-cell adhesion mediated by CD29, CD98, and CD147,” Immunobiology, vol. 215, no. 4, pp. 294–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Pauwels, J. Balzarini, M. Baba et al., “Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds,” Journal of Virological Methods, vol. 20, no. 4, pp. 309–321, 1988. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. S. Roh, H. B. Kim, C.-W. Kang, B. S. Kim, S.-Y. Nah, and J.-H. Kim, “Neuroprotective effects of ginsenoside Rg3 against 24-OH-cholesterol-induced cytotoxicity in cortical neurons,” Journal of Ginseng Research, vol. 34, no. 3, pp. 246–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Kim, D.-R. Oh, M. H. Cha et al., “Protective effect of polygoni cuspidati radix and emodin on Vibrio vulnificus cytotoxicity and infection,” Journal of Microbiology, vol. 46, no. 6, pp. 737–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. G. Lee, B. M. Chain, and J. Y. Cho, “Distinct role of spleen tyrosine kinase in the early phosphorylation of inhibitor of κBα via activation of the phosphoinositide-3-kinase and Akt pathways,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 4, pp. 811–821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G.-J. Kang, S.-C. Han, J.-W. Ock, H.-K. Kang, and E.-S. Yoo, “Anti-inflammatory effect of quercetagetin, an active component of immature Citrus unshiu, in HaCaT human keratinocytes,” Biomolecules and Therapeutics, vol. 21, no. 2, pp. 138–145, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. S. E. Byeon, Y. G. Lee, B. H. Kim et al., “Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting NF-κB activation,” Journal of Microbiology and Biotechnology, vol. 18, no. 12, pp. 1984–1989, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Y. Lee, Y. G. Lee, K.-J. Yang et al., “Akt Cys-310-targeted inhibition by hydroxylated benzene derivatives is tightly linked to their immunosuppressive effects,” The Journal of Biological Chemistry, vol. 285, no. 13, pp. 9932–9948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Shen, J. Lee, M. H. Park et al., “Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and COX-2 genes by suppression of an IKKβ-mediated NF-κB pathway in HEK293 cells,” Journal of Ginseng Research, vol. 35, no. 2, pp. 200–208, 2011. View at Google Scholar
  33. S. B. Song, N. H. Tung, T. H. Quang, N. T. Ngan, K. E. Kim, and Y. H. Kim, “Inhibition of TNF-α-mediated NF-κB transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves,” Journal of Ginseng Research, vol. 36, no. 2, pp. 146–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. K. K. Jung, H. S. Lee, J. Y. Cho et al., “Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia,” Life Sciences, vol. 79, no. 21, pp. 2022–2031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Murakami and H. Ohigashi, “Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals,” International Journal of Cancer, vol. 121, no. 11, pp. 2357–2363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Jeong, Y.-S. Yi, G.-H. Sung et al., “Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract,” Journal of Ethnopharmacology, vol. 152, no. 3, pp. 487–496, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. J. J. Lee, D. H. Kim, D. G. Kim et al., “Toll-like receptor 4-linked janus kinase 2 signaling contributes to internalization of Brucella abortus by macrophages,” Infection and Immunity, vol. 81, no. 7, pp. 2448–2458, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Y. Kim, Y. G. Lee, M.-Y. Kim et al., “Src-mediated regulation of inflammatory responses by actin polymerization,” Biochemical Pharmacology, vol. 79, no. 3, pp. 431–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Kim, W. S. Yang, J. H. Kim et al., “Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages,” Mediators of Inflammation, vol. 2014, Article ID 405158, 12 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. H. K. Byung and Y. C. Jae, “Regulatory role of ginsenoside Rp1, a novel ginsenoside derivative, on CD29-mediated cell adhesion,” Planta Medica, vol. 75, no. 4, pp. 316–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Endale, S.-C. Park, S. Kim et al., “Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells,” Immunobiology, vol. 218, no. 12, pp. 1452–1467, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. W. S. Yang, D. Jeong, Y.-S. Yi et al., “IRAK1/4-targeted anti-inflammatory action of caffeic acid,” Mediators of Inflammation, vol. 2013, Article ID 518183, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. M. H. Kim, Y.-J. Son, S. Y. Lee et al., “JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide,” Biochemical Pharmacology, vol. 86, no. 12, pp. 1747–1761, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Oh, J. H. Kim, J. G. Park et al., “Radical scavenging activity-based and AP-1-targeted anti-inflammatory effects of lutein in macrophage-like and skin keratinocytic cells,” Mediators of Inflammation, vol. 2013, Article ID 787042, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. M. H. Kim, D. S. Yoo, S. Y. Lee et al., “The TRIF/TBK1/IRF-3 activation pathway is the primary inhibitory target of resveratrol, contributing to its broad-spectrum anti-inflammatory effects,” Pharmazie, vol. 66, no. 4, pp. 293–300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. R.-J. Chen, H.-H. Yuan, T.-Y. Zhang et al., “Heme oxygenase-2 suppress TNF-α and IL6 expression via TLR4/MyD88-dependent signaling pathway in mouse cerebral vascular endothelial cells,” Molecular Neurobiology, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. G.-G. Teng, W.-H. Wang, Y. Dai, S.-J. Wang, Y.-X. Chu, and J. Li, “Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4,” PLoS ONE, vol. 8, no. 2, Article ID e56709, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Yang, W. S. Yang, T. Yu et al., “Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases,” Biochemical Pharmacology, vol. 88, no. 2, pp. 201–215, 2014. View at Publisher · View at Google Scholar
  49. F. Zanella, N. R. dos Santos, and W. Link, “Moving to the core: spatiotemporal analysis of forkhead Box O (FOXO) and nuclear factor-κB (NF-κB) nuclear translocation,” Traffic, vol. 14, no. 3, pp. 247–258, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. S. E. Byeon, Y.-S. Yi, J. Oh, B. C. Yoo, S. Hong, and J. Y. Cho, “The role of Src kinase in macrophage-mediated inflammatory responses,” Mediators of Inflammation, vol. 2012, Article ID 512926, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Yu, Y.-S. Yi, Y. Yang, J. Oh, D. Jeong, and J. Y. Cho, “The pivotal role of TBK1 in inflammatory responses mediated by macrophages,” Mediators of Inflammation, vol. 2012, Article ID 979105, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. G. Lee, J. Lee, S. E. Byeon et al., “Functional role of Akt in macrophage-mediated innate immunity,” Frontiers in Bioscience, vol. 16, no. 2, pp. 517–530, 2011. View at Publisher · View at Google Scholar · View at Scopus