Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 418292, 12 pages
http://dx.doi.org/10.1155/2014/418292
Research Article

5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

1Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasße 52, 20246 Hamburg, Germany
2Department of Oncology/Hematology, University Medical Center Hamburg-Eppendorf, Martinistrasße 52, 20246 Hamburg, Germany
3Department for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasße 52, 20246 Hamburg, Germany

Received 6 December 2013; Accepted 28 January 2014; Published 13 March 2014

Academic Editor: Beatrice Gaugler

Copyright © 2014 Thomas Stübig et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Delcuve, M. Rastegar, and J. R. Davie, “Epigenetic control,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 243–250, 2009. View at Publisher · View at Google Scholar
  2. M. Esteller, “Cancer epigenomics: DNA methylomes and histone-modification maps,” Nature Reviews Genetics, vol. 8, no. 4, pp. 286–298, 2007. View at Publisher · View at Google Scholar
  3. L. R. Silverman, E. P. Demakos, B. L. Peterson et al., “Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B,” Journal of Clinical Oncology, vol. 20, no. 10, pp. 2429–2440, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Fenaux, G. J. Mufti, E. Hellstrom-Lindberg et al., “Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia,” Journal of Clinical Oncology, vol. 28, no. 4, pp. 562–569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Stresemann and F. Lyko, “Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine,” International Journal of Cancer, vol. 123, no. 1, pp. 8–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Almstedt, N. Blagitko-Dorfs, J. Duque-Afonso et al., “The DNA demethylating agent 5-aza-2′-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells,” Leukemia Research, vol. 34, no. 7, pp. 899–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Atanackovic, T. Luetkens, B. Kloth et al., “Cancer-testis antigen expression and its epigenetic modulation in acute myeloid leukemia,” American Journal of Hematology, vol. 86, no. 11, pp. 918–922, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Goodyear, A. Agathanggelou, I. Novitzky-Basso et al., “Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia,” Blood, vol. 116, no. 11, pp. 1908–1918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lubbert, H. Bertz, R. Wasch et al., “Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting,” Bone Marrow Transplantation, vol. 45, no. 4, pp. 627–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Czibere, I. Bruns, N. Kroger et al., “5-azacytidine for the treatment of patients with acute myeloid leukemia or myelodysplastic syndrome who relapse after allo-SCT: a retrospective analysis,” Bone Marrow Transplantation, vol. 45, no. 5, pp. 872–876, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Schroeder, A. Czibere, U. Platzbecker et al., “Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation,” Leukemia, vol. 27, no. 6, pp. 1229–1235, 2013. View at Publisher · View at Google Scholar
  12. M. de Lima, S. Giralt, P. F. Thall et al., “Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study,” Cancer, vol. 116, no. 23, pp. 5420–5431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. I. Sanchez-Abarca, S. Gutierrez-Cosio, C. Santamaria et al., “Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting,” Blood, vol. 115, no. 1, pp. 107–121, 2010. View at Publisher · View at Google Scholar
  14. C. B. Wilson, E. Rowell, and M. Sekimata, “Epigenetic control of T-helper-cell differentiation,” Nature Reviews Immunology, vol. 9, no. 2, pp. 91–105, 2009. View at Publisher · View at Google Scholar
  15. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. K. Polansky, K. Kretschmer, J. Freyer et al., “DNA methylation controls Foxp3 gene expression,” European Journal of Immunology, vol. 38, no. 6, pp. 1654–1663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Lal, N. Zhang, W. van der Touw et al., “Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation,” The Journal of Immunology, vol. 182, no. 1, pp. 259–273, 2009. View at Google Scholar · View at Scopus
  18. C. Chappell, C. Beard, J. Altman, R. Jaenisch, and J. Jacob, “DNA methylation by DNA methyltransferase 1 is critical for effector CD8 T cell expansion,” The Journal of Immunology, vol. 176, no. 8, pp. 4562–4572, 2006. View at Google Scholar · View at Scopus
  19. E. N. Kersh, D. R. Fitzpatrick, K. Murali-Krishna et al., “Rapid demethylation of the IFN-γ gene occurs in memory but not naive CD8 T cells,” The Journal of Immunology, vol. 176, no. 7, pp. 4083–4093, 2006. View at Google Scholar · View at Scopus
  20. J. R. Schoenborn, M. O. Dorschner, M. Sekimata et al., “Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-γ,” Nature Immunology, vol. 8, no. 7, pp. 732–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Schmelz, M. Wagner, B. Dorken, and I. Tamm, “5-aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia,” International Journal of Cancer, vol. 114, no. 5, pp. 683–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Chakraverty, H.-S. Eom, J. Sachs et al., “Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions,” Blood, vol. 108, no. 6, pp. 2106–2113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Liu, J. H. Kim, L. D. Falo Jr., and Z. You, “Tumor regulatory T cells potently abrogate antitumor immunity,” The Journal of Immunology, vol. 182, no. 10, pp. 6160–6167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Sercan, D. Stoycheva, G. J. Hammerling, B. Arnold, and T. Schuler, “IFN-γ receptor signaling regulates memory CD8+ T cell differentiation,” The Journal of Immunology, vol. 184, no. 6, pp. 2855–2862, 2010. View at Publisher · View at Google Scholar
  25. E. Ophir, Y. Eidelstein, R. Afik, E. Bachar-Lustig, and Y. Reisner, “Induction of tolerance to bone marrow allografts by donor-derived host nonreactive ex vivo–induced central memory CD8 T cells,” Blood, vol. 115, no. 10, pp. 2095–2104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Araki, A. P. Turner, V. O. Shaffer et al., “mTOR regulates memory CD8 T-cell differentiation,” Nature, vol. 460, no. 7251, pp. 108–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Schroeder, J. Frobel, R. P. Cadeddu et al., “Salvage therapy with azacitidine increases regulatory T cells in peripheral blood of patients with AML or MDS and early relapse after allogeneic blood stem cell transplantation,” Leukemia, vol. 27, no. 9, pp. 1910–1913, 2013. View at Publisher · View at Google Scholar
  28. A. Merlo, J. G. Herman, L. Mao et al., “5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers,” Nature Medicine, vol. 1, no. 7, pp. 686–692, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Gonzalez-Zulueta, C. M. Bender, A. S. Yang et al., “Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing,” Cancer Research, vol. 55, no. 20, pp. 4531–4535, 1995. View at Google Scholar · View at Scopus
  30. G. J. Hannon and D. Beach, “p15INK4B is a potential effector of TGF-β-induced cell cycle arrest,” Nature, vol. 371, no. 6494, pp. 257–261, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. O. C. Goodyear, M. Dennis, N. Y. Jilani et al., “Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML),” Blood, vol. 119, no. 14, pp. 3361–3369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. A. G. Jarnicki, J. Lysaght, S. Todryk, and K. H. Mills, “Suppression of antitumor immunity by IL-10 and TGF-β-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells,” The Journal of Immunology, vol. 177, no. 2, pp. 896–904, 2006. View at Google Scholar · View at Scopus
  33. X. Dao Nguyen and D. S. Robinson, “Fluticasone propionate increases CD4+CD25+ T regulatory cell suppression of allergen-stimulated CD4+CD25- T cells by an IL-10–dependent mechanism,” The Journal of Allergy and Clinical Immunology, vol. 114, no. 2, pp. 296–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Szalmas, F. Banati, A. Koroknai et al., “Lineage-specific silencing of human IL-10 gene expression by promoter methylation in cervical cancer cells,” European Journal of Cancer, vol. 44, no. 7, pp. 1030–1038, 2008. View at Publisher · View at Google Scholar
  35. X. Zhou, S. L. Bailey-Bucktrout, L. T. Jeker et al., “Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo,” Nature Immunology, vol. 10, no. 9, pp. 1000–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Fujio, T. Okamura, and K. Yamamoto, “The family of IL-10-secreting CD4+ T cells,” Advances in Immunology, vol. 105, pp. 99–130, 2010. View at Publisher · View at Google Scholar
  37. C. Konya, J. J. Goronzy, and C. M. Weyand, “Treating autoimmune disease by targeting CD8+ T suppressor cells,” Expert Opinion on Biological Therapy, vol. 9, no. 8, pp. 951–965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. T. Mayer, S. Floess, A. M. Baru, K. Lahl, J. Huehn, and T. Sparwasser, “CD8+Foxp3+ T cells share developmental and phenotypic features with classical CD4+Foxp3+ regulatory T cells but lack potent suppressive activity,” European Journal of Immunology, vol. 41, no. 3, pp. 716–725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Jones and J. Chen, “Inhibition of IFN-γ transcription by site-specific methylation during T helper cell development,” The EMBO Journal, vol. 25, no. 11, pp. 2443–2452, 2006. View at Publisher · View at Google Scholar
  40. S. Kannanganat, C. Ibegbu, L. Chennareddi, H. L. Robinson, and R. R. Amara, “Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells,” Journal of Virology, vol. 81, no. 16, pp. 8468–8476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Rudek, M. Zhao, P. He et al., “Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3906–3911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Costantini, S. Y. Kordasti, A. G. Kulasekararaj et al., “The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome,” Haematologica, vol. 98, no. 8, pp. 1196–1205, 2013. View at Publisher · View at Google Scholar
  43. F. Pages, A. Berger, M. Camus et al., “Effector memory T cells, early metastasis, and survival in colorectal cancer,” The New England Journal of Medicine, vol. 353, no. 25, pp. 2654–2666, 2005. View at Publisher · View at Google Scholar · View at Scopus