Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 612593, 12 pages
http://dx.doi.org/10.1155/2014/612593
Research Article

Epigallocatechin-3-gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting JAK/STAT1 Pathway in Rats

1Department of Pulmonary Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
2Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi’an 710032, China

Received 8 July 2013; Revised 10 December 2013; Accepted 14 December 2013; Published 20 February 2014

Academic Editor: Nina Ivanovska

Copyright © 2014 Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Salomez and J.-L. Vincent, “Drowning: a review of epidemiology, pathophysiology, treatment and prevention,” Resuscitation, vol. 63, no. 3, pp. 261–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Xinmin, D. Yunyou, P. Chaosheng et al., “Dexamethasone treatment attenuates early seawater instillation-induced acute lung injury in rabbits,” Pharmacological Research, vol. 53, no. 4, pp. 372–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. N. Singh, S. Shankar, and R. K. Srivastava, “Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications,” Biochemical Pharmacology, vol. 82, no. 12, pp. 1807–1821, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H.-B. Bae, M. Li, J.-P. Kim et al., “The effect of epigallocatechin gallate on lipopolysaccharide-induced acute lung injury in a murine model,” Inflammation, vol. 33, no. 2, pp. 82–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Menegazzi, E. Tedeschi, D. Dussin et al., “Anti-interferon gamma action of epigallocatechin-3-gallate mediated by specific inhibition of STAT1 activation,” The FASEB Journal, vol. 15, no. 7, pp. 1309–1311, 2001. View at Google Scholar · View at Scopus
  6. Z.-H. Zhou, B. Sun, K. Lin, and L.-W. Zhu, “Prevention of rabbit acute lung injury by surfactant, inhaled nitric oxide, and pressure support ventilation,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 2, part 1, pp. 581–588, 2000. View at Google Scholar · View at Scopus
  7. M. Nosotti, M. Falleni, A. Palleschi et al., “Quantitative real-time polymerase chain reaction detection of lymph node lung cancer micrometastasis using carcinoembryonic antigen marker,” Chest, vol. 128, no. 3, pp. 1539–1544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zhang, B. Zhang, D.-Q. Xu et al., “Tanshinone IIA attenuates seawater aspiration-induced lung injury by inhibiting macrophage migration inhibitory factor,” Biological and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 1052–1057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Gregorakos, N. Markou, V. Psalida et al., “Near-drowning: clinical course of lung injury in adults,” Lung, vol. 187, no. 2, pp. 93–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Ma, Y. Li, Y. Zhao et al., “3,5,4′-tri-O-acetylresveratrol ameliorates seawater exposure-induced lung injury by upregulating connexin 43 expression in lung,” Mediators Inflamm, vol. 2013, Article ID 182132, 2013. View at Publisher · View at Google Scholar
  11. J. Li, M. Xu, Q. Fan et al., “Tanshinone IIA ameliorates seawater exposure-induced lung injury by inhibiting aquaporins (AQP) 1 and AQP5 expression in lung,” Respiratory Physiology and Neurobiology, vol. 176, no. 1-2, pp. 39–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Ma, Y. Zhao, B. Li et al., “Tri-O-acetylresveratrol attenuates seawater aspiration-induced lung injury by inhibiting activation of nuclear factor-kappa B and hypoxia-inducible factor-1alpha,” Respiratory Physiology & Neurobiology, vol. 185, no. 3, pp. 608–614, 2013. View at Google Scholar
  13. Y. J. Lee, D. Y. Choi, Y. P. Yun et al., “Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties,” The Journal of Nutritional Biochemistry, vol. 24, no. 1, pp. 298–310, 2013. View at Google Scholar
  14. I. T. Lee, C. C. Lin, C. Y. Lee et al., “Protective effects of (-)-epigallocatechin-3-gallate against TNF-alpha-induced lung inflammation via ROS-dependent ICAM-1 inhibition,” The Journal of Nutritional Biochemistry, vol. 24, no. 1, pp. 124–136, 2013. View at Google Scholar
  15. S.-Y. Joo, Y.-A. Song, Y.-L. Park et al., “Epigallocatechin-3-gallate inhibits LPS-induced NF-κB and MAPK signaling pathways in bone marrow-derived macrophages,” Gut and Liver, vol. 6, no. 2, pp. 188–196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhong, Y.-S. Chiou, M.-H. Pan, and F. Shahidi, “Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages,” Food Chemistry, vol. 134, no. 2, pp. 742–748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Kuang, Y. Huang, H.-F. Gu et al., “Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats,” European Journal of Pharmacology, vol. 676, no. 1–3, pp. 51–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Matsukawa, “STAT proteins in innate immunity during sepsis: lessons from gene knockout mice,” Acta Medica Okayama, vol. 61, no. 5, pp. 239–245, 2007. View at Google Scholar · View at Scopus
  19. A. Carcereri de Prati, A. R. Ciampa, E. Cavalieri et al., “STAT1 as a new molecular target of anti-inflammatory treatment,” Current Medicinal Chemistry, vol. 12, no. 16, pp. 1819–1828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Kou, S. Qi, W. Dai, L. Luo, and Z. Yin, “Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway,” International Immunopharmacology, vol. 11, no. 8, pp. 1095–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. C. H. Yeh, H. C. Shih, H. M. Hong et al., “Protective effect of wogonin on proinflammatory cytokine generation via Jak1/3-STAT1/3 pathway in lipopolysaccharide stimulated BV2 microglial cells,” Toxicology and Industrial Health. In press.
  22. M. Severgnini, S. Takahashi, L. M. Rozo et al., “Activation of the STAT pathway in acute lung injury,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 286, no. 6, pp. L1282–L1292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. G. Bode, P. Gatsios, S. Ludwig et al., “The mitogen-activated protein (MAP) kinase p38 and its upstream activator MAP kinase kinase 6 are involved in the activation of signal transducer and activator of transcription by hyperosmolarity,” Journal of Biological Chemistry, vol. 274, no. 42, pp. 30222–30227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Na, B. Tunggal, and L. Eichinger, “STATc is a key regulator of the transcriptional response to hyperosmotic shock,” BMC Genomics, vol. 8, article 123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Araki, M. Tsujioka, T. Abe et al., “A STAT-regulated, stress-induced signalling pathway in Dictyostelium,” Journal of Cell Science, vol. 116, no. 14, pp. 2907–2915, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. P. A. Townsend, T. M. Scarabelli, E. Pasini et al., “Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis,” The FASEB Journal, vol. 18, no. 13, pp. 1621–1623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Tedeschi, H. Suzuki, and M. Menegazzi, “Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition,” Annals of the New York Academy of Sciences, vol. 973, pp. 435–437, 2002. View at Google Scholar · View at Scopus