Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014 (2014), Article ID 658351, 9 pages
http://dx.doi.org/10.1155/2014/658351
Research Article

21-O-Angeloyltheasapogenol E3, a Novel Triterpenoid Saponin from the Seeds of Tea Plants, Inhibits Macrophage-Mediated Inflammatory Responses in a NF-κB-Dependent Manner

1Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
2Medical Beauty Research Institute, AmorePacific R&D Center, Yongin 446-729, Republic of Korea

Received 27 July 2014; Revised 2 October 2014; Accepted 3 October 2014; Published 10 November 2014

Academic Editor: Tânia Silvia Fröde

Copyright © 2014 Woo Seok Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Yu, Y.-S. Yi, Y. Yang, J. Oh, D. Jeong, and J. Y. Cho, “The pivotal role of TBK1 in inflammatory responses mediated by macrophages,” Mediators of Inflammation, vol. 2012, Article ID 979105, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. E. Byeon, Y.-S. Yi, J. Oh, B. C. Yoo, S. Hong, and J. Y. Cho, “The role of Src kinase in macrophage-mediated inflammatory responses,” Mediators of Inflammation, vol. 2012, Article ID 512926, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Laveti, M. Kumar, R. Hemalatha et al., “Anti-inflammatory treatments for chronic diseases: a review,” Inflammation & Allergy—Drug Targets, vol. 12, no. 5, pp. 349–361, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Frostegard, “Immune mechanisms in atherosclerosis, especially in diabetes type 2,” Frontiers in Endocrinology, vol. 4, article 162, 2013. View at Google Scholar
  5. D. H. Kang and S. W. Kang, “Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease,” Biomolecules and Therapeutics, vol. 21, no. 2, pp. 89–96, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. I. Cha and H.-S. Kim, “Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer,” BMB Reports, vol. 46, no. 9, pp. 429–438, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. H.-J. Kweon and B.-C. Suh, “Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation,” BMB Reports, vol. 46, no. 6, pp. 295–304, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Lu, T. Umeda, A. Yagi et al., “Triterpenoid saponins from the roots of tea plant (Camellia sinensis var. assamica),” Phytochemistry, vol. 53, no. 8, pp. 941–946, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. X.-F. Zhang, Y.-Y. Han, G.-H. Bao et al., “A new saponin from tea seed pomace (Camellia oleifera abel) and its protective effect on PC12 cells,” Molecules, vol. 17, no. 10, pp. 11721–11728, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Yang, W. S. Yang, T. Yu et al., “Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases,” Biochemical Pharmacology, vol. 88, no. 2, pp. 201–215, 2014. View at Publisher · View at Google Scholar
  11. T. Murakami, J. Nakamura, T. Kageura, H. Matsuda, and M. Yoshikawa, “Bioactive saponins and glycosides. XVII. Inhibitory effect on gastric emptying and accelerating effect on gastrointestinal transit of tea saponins: structures of assamsaponins F, G, H, I, and J from the seeds and leaves of the tea plant,” Chemical and Pharmaceutical Bulletin, vol. 48, no. 11, pp. 1720–1725, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Kitagawa, K. Hori, T. Motozawa, T. Murakami, and M. Yoshikawa, “Structures of new acylated oleanene-type triterpene oligoglycosides, theasaponins E1 and E2, from the seeds of tea plant, Camellia sinensis (L.) O. KUNTZE,” Chemical and Pharmaceutical Bulletin, vol. 46, no. 12, pp. 1901–1906, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Yoshikawa, T. Morikawa, N. Li, A. Nagatomo, X. Li, and H. Matsuda, “Bioactive saponins and glycosides. XXIII. Triterpene saponins with gastroprotective effect from the seeds of Camellia sinensis—theasaponins E3, E4, E5, E6, and E7,” Chemical and Pharmaceutical Bulletin, vol. 53, no. 12, pp. 1559–1564, 2005. View at Google Scholar
  14. K. Duperrier, A. Eljaafari, C. Dezutter-Dambuyant et al., “Distinct subsets of dendritic cells resembling dermal DCs can be generated in vitro from monocytes, in the presence of different serum supplements,” Journal of Immunological Methods, vol. 238, no. 1-2, pp. 119–131, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. G. Lee, W. M. Lee, J. Y. Kim et al., “Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells,” British Journal of Pharmacology, vol. 154, no. 4, pp. 852–863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Y. Cho, D. A. Fox, V. Horejsi et al., “The functional interactions between CD98, β1-integrins, and CD147 in the induction of U937 homotypic aggregation,” Blood, vol. 98, no. 2, pp. 374–382, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. G. Lee, J. Lee, and J. Y. Cho, “Cell-permeable ceramides act as novel regulators of U937 cell-cell adhesion mediated by CD29, CD98, and CD147,” Immunobiology, vol. 215, no. 4, pp. 294–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Cho, K. U. Baik, J. H. Jung, and M. H. Park, “In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa,” European Journal of Pharmacology, vol. 398, no. 3, pp. 399–407, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, “Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids,” Analytical Biochemistry, vol. 126, no. 1, pp. 131–138, 1982. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Pauwels, J. Balzarini, M. Baba et al., “Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds,” Journal of Virological Methods, vol. 20, no. 4, pp. 309–321, 1988. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. S. Roh, H. B. Kim, C.-W. Kang, B. S. Kim, S.-Y. Nah, and J.-H. Kim, “Neuroprotective effects of ginsenoside Rg3 against 24-OH-cholesterol-induced cytotoxicity in cortical neurons,” Journal of Ginseng Research, vol. 34, no. 3, pp. 246–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Kim, D.-R. Oh, M. H. Cha et al., “Protective effect of polygoni cuspidati radix and emodin on Vibrio vulnificus cytotoxicity and infection,” Journal of Microbiology, vol. 46, no. 6, pp. 737–743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S.-I. Lim, C.-W. Cho, U.-K. Choi, and Y.-C. Kim, “Antioxidant activity and ginsenoside pattern of fermented white ginseng,” Journal of Ginseng Research, vol. 34, no. 3, pp. 168–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Yu, Y. J. Lee, H. M. Yang et al., “Inhibitory effect of Sanguisorba officinalis ethanol extract on NO and PGE2 production is mediated by suppression of NF-κB and AP-1 activation signaling cascade,” Journal of Ethnopharmacology, vol. 134, no. 1, pp. 11–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Kwon, S. Kim, S. Shim, D. S. Choi, J. H. Kim, and Y. B. Kwon, “Modulation of LPS-stimulated astroglial activation by ginseng total saponins,” Journal of Ginseng Research, vol. 35, no. 1, pp. 80–85, 2011. View at Google Scholar
  26. T. Shen, J. Lee, M. H. Park et al., “Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and Cox-2 genes by suppression of an IKKβ-mediated NF-κB pathway in HEK293 cells,” Journal of Ginseng Research, vol. 35, no. 2, pp. 200–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. B. Song, N. H. Tung, T. H. Quang, N. T. T. Ngan, K. E. Kim, and Y. H. Kim, “Inhibition of TNF-α-mediated NF-κB transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves,” Journal of Ginseng Research, vol. 36, no. 2, pp. 146–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. K. K. Jung, H. S. Lee, J. Y. Cho et al., “Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia,” Life Sciences, vol. 79, no. 21, pp. 2022–2031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Y. Lee, Y. G. Lee, K.-J. Yang et al., “Akt Cys-310-targeted inhibition by hydroxylated benzene derivatives is tightly linked to their immunosuppressive effects,” The Journal of Biological Chemistry, vol. 285, no. 13, pp. 9932–9948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Yu, J. Shim, Y. Yang et al., “3-(4-(tert-Octyl)phenoxy)propane-1,2-diol suppresses inflammatory responses via inhibition of multiple kinases,” Biochemical Pharmacology, vol. 83, no. 11, pp. 1540–1551, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M.-Y. Kim and J. Y. Cho, “20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages,” Journal of Ginseng Research, vol. 37, no. 3, pp. 293–299, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Kim, W. S. Yang, J. H. Kim et al., “Lancemaside A from Codonopsis lanceolata modulates the inflammatory responses mediated by monocytes and macrophages,” Mediators of Inflammation, vol. 2014, Article ID 405158, 12 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Valavanidis, T. Vlachogianni, K. Fiotakis, and S. Loridas, “Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms,” International Journal of Environmental Research and Public Health, vol. 10, no. 9, pp. 3886–3907, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. L. A. Tapondjou, L. B. T. Nyaa, P. Tane et al., “Cytotoxic and antioxidant triterpene saponins from Butyrospermum parkii (Sapotaceae),” Carbohydrate Research, vol. 346, no. 17, pp. 2699–2704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Li, J. Zhao, Y. Liu et al., “New triterpenoid saponins from Ilex cornuta and their protective effects against H2O2-induced myocardial cell injury,” Journal of Agricultural and Food Chemistry, vol. 62, no. 2, pp. 488–496, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. A. Kim, C.-S. Kong, J. I. Lee et al., “Evaluation of novel antioxidant triterpenoid saponins from the halophyte Salicornia herbacea,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 13, pp. 4318–4322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. D. H. Kim, J. H. Chung, J. S. Yoon et al., “Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-κB in LPS-stimulated RAW264.7 cells and mouse liver,” Journal of Ginseng Research, vol. 37, no. 1, pp. 54–63, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Jeong, Y.-S. Yi, G.-H. Sung et al., “Anti-inflammatory activities and mechanisms of Artemisia asiatica ethanol extract,” Journal of Ethnopharmacology, vol. 152, no. 3, pp. 487–496, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. S. Yi, Y. J. Son, C. Ryou, G. H. Sung, J. H. Kim, and J. Y. Cho, “Functional roles of Syk in macrophage-mediated inflammatory responses,” Mediators of Inflammation, vol. 2014, Article ID 270302, 12 pages, 2014. View at Publisher · View at Google Scholar
  40. T. H. Quang, N. T. T. Ngan, C. V. Minh et al., “Anti-inflammatory triterpenoid saponins from the stem bark of Kalopanax pictus,” Journal of Natural Products, vol. 74, no. 9, pp. 1908–1915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. H.-J. An, I.-T. Kim, H.-J. Park, H.-M. Kim, J.-H. Choi, and K.-T. Lee, “Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κb pathway in RAW 264.7 macrophages,” International Immunopharmacology, vol. 11, no. 4, pp. 504–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Magnani, R. Crinelli, M. Bianchi, and A. Antonelli, “The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB),” Current Drug Targets, vol. 1, no. 4, pp. 387–399, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. G. Lee, J. Lee, S. E. Byeon et al., “Functional role of Akt in macrophage-mediated innate immunity,” Frontiers in Bioscience, vol. 16, no. 2, pp. 517–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Y. Lee, Y. G. Lee, J. Lee et al., “Akt Cys-310-targeted inhibition by hydroxylated benzene derivatives is tightly linked to their immunosuppressive effects,” The Journal of Biological Chemistry, vol. 285, no. 13, pp. 9932–9948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. R. Kim, J. Y. Cho, J. Y. Lee, J. S. Choi, and H. Y. Chung, “Hydroquinone modulates reactivity of peroxynitrite and nitric oxide production,” Journal of Pharmacy and Pharmacology, vol. 57, no. 4, pp. 475–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Y. Lee, J. Y. Kim, Y. G. Lee et al., “Hydroquinone, a reactive metabolite of benzene, reduces macrophage-mediated immune responses,” Molecules and Cells, vol. 23, no. 2, pp. 198–206, 2007. View at Google Scholar · View at Scopus