Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 697837, 11 pages
http://dx.doi.org/10.1155/2014/697837
Research Article

Hantaan Virus Infection Induces CXCL10 Expression through TLR3, RIG-I, and MDA-5 Pathways Correlated with the Disease Severity

1Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
2Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
3Department of Infectious Disease, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710032, China

Received 19 October 2013; Revised 28 December 2013; Accepted 11 January 2014; Published 23 February 2014

Academic Editor: Beatriz De las Heras

Copyright © 2014 Yusi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. Schmaljohn and J. M. Dalrymple, “Analysis of Hantaan virus RNA: evidence for a new genus of Bunyaviridae,” Virology, vol. 131, no. 2, pp. 482–491, 1983. View at Google Scholar · View at Scopus
  2. H. W. Lee, R. W. Lee, and K. M. Johnson, “Isolation of the etiologic agent of Korean hemorrhagic fever,” Journal of Infectious Diseases, vol. 137, no. 3, pp. 298–308, 1978. View at Google Scholar · View at Scopus
  3. A. Vaheri, T. Strandin, J. Hepojoki et al., “Uncovering the mysteries of hantavirus infections,” Nature Reviews Microbiology, vol. 11, no. 8, pp. 539–550, 2013. View at Google Scholar
  4. E. R. Mackow and I. N. Gavrilovskaya, “Hantavirus regulation of endothelial cell functions,” Thrombosis and Haemostasis, vol. 102, no. 6, pp. 1030–1041, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Schonrich, A. Rang, N. Lutteke et al., “Hantavirus-induced immunity in rodent reservoirs and humans,” Nature Reviews Immunology, vol. 225, pp. 163–189, 2008. View at Publisher · View at Google Scholar
  6. L. F. Neville, G. Mathiak, and O. Bagasra, “The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): a novel, pleiotropic member of the C-X-C chemokine superfamily,” Cytokine and Growth Factor Reviews, vol. 8, no. 3, pp. 207–219, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhou, S. Wang, J.-W. Ma et al., “Hepatitis B virus protein X-induced expression of the CXC chemokine IP-10 is mediated through activation of NF-κB and increases migration of leukocytes,” The Journal of Biological Chemistry, vol. 285, no. 16, pp. 12159–12168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Lagging, A. I. Romero, J. Westin et al., “IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection,” Hepatology, vol. 44, no. 6, pp. 1617–1625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Jiao, T. Zhang, R. Wang et al., “Plasma IP-10 is associated with rapid disease progression in early HIV-1 infection,” Viral Immunology, vol. 25, no. 4, pp. 333–337, 2012. View at Publisher · View at Google Scholar
  10. C. M. Cameron, M. J. Cameron, J. F. Bermejo-Martin et al., “Gene expression analysis of host innate immune responses during lethal H5N1 infection in ferrets,” Journal of Virology, vol. 82, no. 22, pp. 11308–11317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Y. Cheung, L. L. M. Poon, I. H. Y. Ng et al., “Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis,” Journal of Virology, vol. 79, no. 12, pp. 7819–7826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P.-P. Ip and F. Liao, “Resistance to dengue virus infection in mice is potentiated by CXCL10 and is independent of CXCL10-mediated leukocyte recruitment,” Journal of Immunology, vol. 184, no. 10, pp. 5705–5714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. S. Zaheer and D. Proud, “Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1,” American Journal of Respiratory Cell and Molecular Biology, vol. 43, no. 4, pp. 413–421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Williams, H. Yao, N. K. Dhillon, and S. J. Buch, “HIV-1 Tat co-operates with IFN-γ and TNF-α to increase CXCL10 in human astrocytes,” PLoS ONE, vol. 4, no. 5, Article ID e5709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Lu, A. Masic, Q. Liu, and Y. Zhou, “Regulation of influenza A virus induced CXCL-10 gene expression requires PI3K/Akt pathway and IRF3 transcription factor,” Molecular Immunology, vol. 48, no. 12-13, pp. 1417–1423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Ji, J. Liu, Z. Wang, and Z. Li, “PPARγ agonist rosiglitazone ameliorates LPS-induced inflammation in vascular smooth muscle cells via the TLR4/TRIF/IRF3/IP-10 signaling pathway,” Cytokine, vol. 55, no. 3, pp. 409–419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Geimonen, S. Neff, T. Raymond, S. S. Kocer, I. N. Gavrilovskaya, and E. R. Mackow, “Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13837–13842, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Yi, Z. Xu, R. Zhuang et al., “Hantaan virus RNA load in patients having hemorrhagic fever with renal syndrome: correlation with disease severity,” The Journal of Infectious Diseases, vol. 207, no. 9, pp. 1457–1461, 2013. View at Google Scholar
  19. M. Wang, J. Wang, Y. Zhu et al., “Cellular immune response to hantaan virus nucleocapsid protein in the acute phase of hemorrhagic fever with renal syndrome: Correlation with disease severity,” Journal of Infectious Diseases, vol. 199, no. 2, pp. 188–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Liu, Y. Ma, J. Yi et al., “Elevated plasma soluble sema4D/CD100 levels are associated with disease severity in patients of hemorrhagic fever with renal syndrome,” PLoS ONE, vol. 8, no. 9, Article ID e73958, 2013. View at Google Scholar
  21. C. B. Jonsson, L. T. M. Figueiredo, and O. Vapalahti, “A global perspective on hantavirus ecology, epidemiology, and disease,” Clinical Microbiology Reviews, vol. 23, no. 2, pp. 412–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Md Sheikh, H. Ochi, A. Manabe, and J. Masuda, “Lysophosphatidylcholine posttranscriptionally inhibits interferon-γ- induced IP-10, Mig and I-Tac expression in endothelial cells,” Cardiovascular Research, vol. 65, no. 1, pp. 263–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Kim and S. M. Fischer, “Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells: Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues,” The Journal of Biological Chemistry, vol. 273, no. 42, pp. 27686–27694, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Roe, S. Coughlan, J. Hassan et al., “Elevated serum levels of interferon-γ-inducible protein-10 in patients coinfected with hepatitis C virus and HIV,” Journal of Infectious Diseases, vol. 196, no. 7, pp. 1053–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. A. Kolb, B. Sporer, F. Lahrtz, U. Koedel, H.-W. Pfister, and A. Fontana, “Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-γ inducible protein 10,” Journal of Neuroimmunology, vol. 93, no. 1-2, pp. 172–181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Butera, S. Marukian, A. E. Iwamaye et al., “Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C,” Blood, vol. 106, no. 4, pp. 1175–1182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. L. Spurrell, S. Wiehler, R. S. Zaheer, S. P. Sanders, and D. Proud, “Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection,” American Journal of Physiology, vol. 289, no. 1, pp. L85–L95, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. H. Kim, J.-E. Kim, and M. C. Hyun, “Cytokine response in pediatric patients with pandemic influenza H1N1 2009 virus infection and pneumonia: comparison with pediatric pneumonia without H1N1 2009 infection,” Pediatric Pulmonology, vol. 46, no. 12, pp. 1233–1239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Deng, G. Zhou, R. Zhang et al., “Regulatory polymorphisms in the promoter of CXCL10 gene and disease progression in male hepatitis B virus carriers,” Gastroenterology, vol. 134, no. 3, pp. 716–726, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Lindell, T. E. Lane, and N. W. Lukacs, “CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8+ T cell efficacy,” European Journal of Immunology, vol. 38, no. 8, pp. 2168–2179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. B. Sundstrom, L. K. McMullan, C. F. Spiropoulou et al., “Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells,” Journal of Virology, vol. 75, no. 13, pp. 6070–6085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. J. W. Huggins, C. M. Hsiang, T. M. Cosgriff et al., “Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome,” Journal of Infectious Diseases, vol. 164, no. 6, pp. 1119–1127, 1991. View at Google Scholar · View at Scopus
  33. W. Silvester, “Mediator removal with CRRT: complement and cytokines,” American Journal of Kidney Diseases, vol. 30, supplement 4, no. 5, pp. S38–S43, 1997. View at Google Scholar · View at Scopus
  34. P. Maes, J. Clement, I. Gavrilovskaya, and M. van Ranst, “Hantaviruses: immunology, treatment, and prevention,” Viral Immunology, vol. 17, no. 4, pp. 481–497, 2004. View at Google Scholar · View at Scopus
  35. H. Wang, A. Vaheri, F. Weberspi-Sup, and A. Plyusnin, “Old world hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 59 termini of their genomic RNAs are monophosphorylated,” Journal of General Virology, vol. 92, no. 5, pp. 1199–1204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. B. Nolte, R. M. Feddersen, K. Foucar et al., “Hantavirus pulmonary syndrome in the United States: a pathological description of a disease caused by a new agent,” Human Pathology, vol. 26, no. 1, pp. 110–120, 1995. View at Google Scholar · View at Scopus
  37. M. N. Pensiero, J. B. Sharefkin, C. W. Dieffenbach, and J. Hay, “Hantaan virus infection of human endothelial cells,” Journal of Virology, vol. 66, no. 10, pp. 5929–5936, 1992. View at Google Scholar · View at Scopus
  38. J. Lahdevirta, “Clinical features of HFRS in Scandinavia as compared with East Asia,” Scandinavian Journal of Infectious Diseases, vol. 14, no. 36, pp. 93–95, 1982. View at Google Scholar · View at Scopus