Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2014, Article ID 973986, 13 pages
http://dx.doi.org/10.1155/2014/973986
Research Article

Metformin Attenuates Experimental Autoimmune Arthritis through Reciprocal Regulation of Th17/Treg Balance and Osteoclastogenesis

1The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
2Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
3Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
4Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
5Department of Life Science, College of Medicine, Laboratory of Immune Network, Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea

Received 22 April 2014; Accepted 8 July 2014; Published 20 August 2014

Academic Editor: José C. Rosa Neto

Copyright © 2014 Hye-Jin Son et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Feldmann, F. M. Brennan, and R. N. Maini, “Rheumatoid arthritis,” Cell, vol. 85, no. 3, pp. 307–310, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. I. B. McInnes and G. Schett, “The pathogenesis of rheumatoid arthritis,” The New England Journal of Medicine, vol. 365, no. 23, pp. 2205–2219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. K. Lee, R. Mukasa, R. D. Hatton, and C. T. Weaver, “Developmental plasticity of Th17 and Treg cells,” Current Opinion in Immunology, vol. 21, no. 3, pp. 274–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Zhou, R. Myers, Y. Li et al., “Role of AMP-activated protein kinase in mechanism of metformin action,” The Journal of Clinical Investigation, vol. 108, no. 8, pp. 1167–1174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Rena, E. R. Pearson, and K. Sakamoto, “Molecular mechanism of action of metformin: old or new insights?” Diabetologia, vol. 56, no. 9, pp. 1898–1906, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, “AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism,” Cell Metabolism, vol. 1, no. 1, pp. 15–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Nagai, Y. Kurebayashi, and S. Koyasu, “Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation,” Annals of the New York Academy of Sciences, vol. 1280, no. 1, pp. 30–34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Gravallese, Y. Harada, J. T. Wang, A. H. Gorn, T. S. Thornhill, and S. R. Goldring, “Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis,” The American Journal of Pathology, vol. 152, no. 4, pp. 943–951, 1998. View at Google Scholar · View at Scopus
  9. H. Glantschnig, J. E. Fisher, G. Wesolowski, G. A. Rodan, and A. A. Reszka, “M-CSF, TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase,” Cell Death and Differentiation, vol. 10, no. 10, pp. 1165–1177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Indo, S. Takeshita, KA. Ishii et al., “Metabolic regulation of osteoclast differentiation and function,” Journal of Bone and Mineral Research, vol. 28, pp. 2392–2399, 2013. View at Google Scholar
  11. R. O. Williams, M. Feldmann, and R. N. Maini, “Anti-tumor necrosis factor ameliorates joint disease in murine collagen- induced arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 20, pp. 9784–9788, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Ju, M. L. Cho, J. M. Jhun et al., “Oral administration of type-II collagen suppresses IL-17-associated RANKL expression of CD4+ T cells in collagen-induced arthritis,” Immunology Letters, vol. 117, no. 1, pp. 16–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Camps, T. Rückle, H. Ji et al., “Blockade of PI3Kγ suppresses joint inflammation and damage in mouse models of rheumatoid arthritis,” Nature Medicine, vol. 11, no. 9, pp. 936–943, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Park, M. Park, H. Oh et al., “Grape-seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune arthritis,” PLoS ONE, vol. 7, no. 12, Article ID e51377, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Korn, M. Mitsdoerffer, A. L. Croxford et al., “IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 47, pp. 18460–18465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Hanidziar and M. Koulmanda, “Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance,” Current Opinion in Organ Transplantation, vol. 15, no. 4, pp. 411–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Y. Kang, Y. K. Kim, H. Yi et al., “Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis,” International Immunopharmacology, vol. 16, no. 1, pp. 85–92, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. Michalek, V. A. Gerriets, S. R. Jacobs et al., “Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets,” Journal of Immunology, vol. 186, no. 6, pp. 3299–3303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Z. Shi, R. Wang, G. Huang et al., “HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells,” Journal of Experimental Medicine, vol. 208, no. 7, pp. 1367–1376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. E. V. Dang, J. Barbi, H. Yang et al., “Control of TH17/Treg balance by hypoxia-inducible factor 1,” Cell, vol. 146, no. 5, pp. 772–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Nerstedt, A. Johansson, C. X. Andersson, E. Cansby, U. Smith, and M. Mahlapuu, “AMP-activated protein kinase inhibits IL-6-stimulated inflammatory response in human liver cells by suppressing phosphorylation of signal transducer and activator of transcription 3 (STAT3),” Diabetologia, vol. 53, no. 11, pp. 2406–2416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. X. P. Yang, K. Ghoreschi, S. M. Steward-Tharp et al., “Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5,” Nature Immunology, vol. 12, no. 3, pp. 247–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Nath, M. Khan, M. K. Paintlia, I. Singh, M. N. Hoda, and S. Giri, “Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis,” The Journal of Immunology, vol. 182, no. 12, pp. 8005–8014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Mai, Z. Zhang, S. Xu et al., “Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats,” Journal of Cellular Biochemistry, vol. 112, no. 10, pp. 2902–2909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Kang, B. Viollet, and D. Wu, “Genetic deletion of catalytic subunits of AMP-activated protein kinase increases osteoclasts and reduces bone mass in young adult mice,” The Journal of Biological Chemistry, vol. 288, no. 17, pp. 12187–12196, 2013. View at Publisher · View at Google Scholar · View at Scopus