Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015 (2015), Article ID 313140, 9 pages
http://dx.doi.org/10.1155/2015/313140
Research Article

Increased NHC Cells in the Peritoneal Cavity of Plasmacytoma Susceptible BALB/c Mouse

1Departamento de Inmunología, Laboratorio de Inmunología Clínica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Mexico, DF, Mexico
2Departamento de Anatomía Patológica, Laboratorio de Patología Molecular, Instituto Nacional de Pediatría, 04530 Mexico, DF, Mexico

Received 27 September 2014; Accepted 5 January 2015

Academic Editor: Madhav Bhatia

Copyright © 2015 Berenice Sánchez-González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. N. Anderson and M. Potter, “Induction of plasma cell tumours in BALB-c mice with 2,6,10,14-tetramethylpentadecane (pristane),” Nature, vol. 222, no. 5197, pp. 994–995, 1969. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Y. K. Armstrong, P. Ebenstein, W. H. Konigsberg, and F. F. Richards, “Endogenous RNA tumor viruses are activated during chemical induction of murine plasmacytomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 9, pp. 4549–4552, 1978. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Potter, “A resume of the current status of the development of plasma-cell tumors in mice,” Cancer Research, vol. 28, no. 9, pp. 1891–1896, 1968. View at Google Scholar · View at Scopus
  4. M. Potter and C. R. Boyce, “Induction of plasma-cell neoplasms in strain BALB/c mice with mineral oil and mineral oil adjuvants,” Nature, vol. 193, pp. 1086–1087, 1962. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Potter and J. S. Wax, “Peritoneal plasmacytomagenesis in mice: comparison of different pristane dose regimens,” Journal of the National Cancer Institute, vol. 71, no. 2, pp. 391–395, 1983. View at Google Scholar · View at Scopus
  6. K. Gadó, S. Silva, K. Pálóczi, G. Domján, and A. Falus, “Mouse plasmacytoma: an experimental model of human multiple myeloma,” Haematologica, vol. 86, no. 3, pp. 227–236, 2001. View at Google Scholar · View at Scopus
  7. G. Lattanzio, C. Libert, M. Aquilina et al., “Defective development of pristane-oil-induced plasmacytomas in interleukin-6-deficient BALB/c mice,” American Journal of Pathology, vol. 151, no. 3, pp. 689–696, 1997. View at Google Scholar · View at Scopus
  8. S. Ohno, J.-I. Hayakawa, N. Hashimoto, and F. Wiener, “Murine plasmacytomas, carrier of the t(12;15) chromosomal translocation, develop from immature/mature B cells not from differentiated plasma cells,” Carcinogenesis, vol. 20, no. 4, pp. 529–538, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. K. Lee, R. Mukasa, R. D. Hatton, and C. T. Weaver, “Developmental plasticity of Th17 and Treg cells,” Current Opinion in Immunology, vol. 21, no. 3, pp. 274–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Romagnani, “Regulation of the T cell response,” Clinical and Experimental Allergy, vol. 36, no. 11, pp. 1357–1366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Jonuleit and E. Schmitt, “The regulator T cell family: distinct subsets and their interrelations,” Journal of Immunology, vol. 171, no. 12, pp. 6323–6327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Moro, T. Yamada, M. Tanabe et al., “Innate production of TH2 cytokines by adipose tissue-associated c-Kit+ Sca-1+ lymphoid cells,” Nature, vol. 463, no. 7280, pp. 540–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D. R. Neill, S. H. Wong, A. Bellosi et al., “Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity,” Nature, vol. 464, no. 7293, pp. 1367–1370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Price, H.-E. Liang, B. M. Sullivan et al., “Systemically dispersed innate IL-13-expressing cells in type 2 immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 25, pp. 11489–11494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Saenz, M. C. Siracusa, J. G. Perrigoue et al., “IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses,” Nature, vol. 464, no. 7293, pp. 1362–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y.-J. Chang, H. Y. Kim, L. A. Albacker et al., “Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity,” Nature Immunology, vol. 12, no. 7, pp. 631–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. C. Amezcua Vesely, M. Schwartz, D. A. Bermejo et al., “FcgammaRIIb and BAFF differentially regulate peritoneal B1 cell survival,” The Journal of Immunology, vol. 188, no. 10, pp. 4792–4800, 2012. View at Publisher · View at Google Scholar
  19. F. L. Oliveira, R. Chammas, L. Ricon et al., “Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells,” Glycobiology, vol. 19, no. 11, pp. 1248–1258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. W. Tung and L. A. Herzenberg, “Unraveling B-1 progenitors,” Current Opinion in Immunology, vol. 19, no. 2, pp. 150–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. C. Merino and A. Gruppi, “Origin and development of B1 lymphocytes. A cell population involved in defence and auto-immunity,” Medicina, vol. 66, no. 2, pp. 165–172, 2006. View at Google Scholar · View at Scopus
  22. S. Garaud, C. le Dantec, A. R. de Mendoza, R. A. Mageed, P. Youinou, and Y. Renaudineau, “IL-10 production by B Cells expressing CD5 with the alternative exon 1B,” Annals of the New York Academy of Sciences, vol. 1173, pp. 280–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. O'Garra and K. Murphy, “Role of cytokines in determining T-lymphocyte function,” Current Opinion in Immunology, vol. 6, no. 3, pp. 458–466, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. A. O'Garra and M. Howard, “IL-10 production by CD5 B cells,” Annals of the New York Academy of Sciences, vol. 651, pp. 182–199, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. D. O. Griffin and T. L. Rothstein, “A small cd11b+ human B1 cell subpopulation stimulates T cells and is expanded in lupus,” Journal of Experimental Medicine, vol. 208, no. 13, pp. 2591–2598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Zhong, W. Gao, N. Degauque et al., “Reciprocal generation of Th1/Th17 and Treg cells by B1 and B2 B cells,” European Journal of Immunology, vol. 37, no. 9, pp. 2400–2404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ray and B. N. Dittel, “Isolation of mouse peritoneal cavity cells,” Journal of Visualized Experiments, no. 35, pp. 1–3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Potter, S. Morrison, F. Wiener, X. K. Zhang, and F. W. Miller, “Induction of plasmacytomas with silicone gel in genetically susceptible strains of mice,” Journal of the National Cancer Institute, vol. 86, no. 14, pp. 1058–1065, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Potter and R. C. Maccardle, “histology of developing plasma cell neoplasia induced by mineral oil in Balb/C mice,” Journal of the National Cancer Institute, vol. 33, pp. 497–515, 1964. View at Google Scholar
  30. B. Roy, S. Shukla, M. Łyszkiewicz et al., “Somatic hypermutation in peritoneal B1b cells,” Molecular Immunology, vol. 46, no. 8-9, pp. 1613–1619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Komai-Koma, D. S. Gilchrist, A. N. J. McKenzie, C. S. Goodyear, D. Xu, and F. Y. Liew, “IL-33 activates B1 cells and exacerbates contact sensitivity,” Journal of Immunology, vol. 186, no. 4, pp. 2584–2591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Colombo, G. Sun, and K. R. Alugupalli, “T-cell-independent immune responses do not require Cxc ligand 13-mediated B1 cell migration,” Infection and Immunity, vol. 78, no. 9, pp. 3950–3956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S.-A. Ha, M. Tsuji, K. Suzuki et al., “Regulation of B1 cell migration by signals through Toll-like receptors,” Journal of Experimental Medicine, vol. 203, no. 11, pp. 2541–2550, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Bie, P. Zhang, Z. Su et al., “Polarization of ILC2s in peripheral blood might contribute to immunosuppressive microenvironment in patients with gastric cancer,” Journal of Immunology Research, vol. 2014, Article ID 923135, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Wilhelm, K. Hirota, B. Stieglitz et al., “An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation,” Nature Immunology, vol. 12, no. 11, pp. 1071–1077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Tominaga, S. Takaki, Y. Hitoshi, and K. Takatsu, “Role of the interleukin 5 receptor system in hematopoiesis: molecular basis for overlapping function of cytokines,” BioEssays, vol. 14, no. 8, pp. 527–533, 1992. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Takatsu and H. Nakajima, “IL-5 and eosinophilia,” Current Opinion in Immunology, vol. 20, no. 3, pp. 288–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. V. Kaveri, G. J. Silverman, and J. Bayry, “Natural IgM in immune equilibrium and harnessing their therapeutic potential,” Journal of Immunology, vol. 188, no. 3, pp. 939–945, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Mion, S. Tonon, B. Toffoletto, D. Cesselli, C. E. Pucillo, and G. Vitale, “IL-10 production by B cells is differentially regulated by immune-mediated and infectious stimuli and requires p38 activation,” Molecular Immunology, vol. 63, no. 2, pp. 606–276, 2015. View at Publisher · View at Google Scholar