Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2015 (2015), Article ID 380218, 11 pages
http://dx.doi.org/10.1155/2015/380218
Research Article

Punicalagin Induces Nrf2/HO-1 Expression via Upregulation of PI3K/AKT Pathway and Inhibits LPS-Induced Oxidative Stress in RAW264.7 Macrophages

1CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), No. 2 West Yuanmingyuan Road, Beijing 100193, China
2College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
3College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing 102206, China
4Beijing Key Laboratory for Dairy Cow Nutrition, Beijing 102206, China

Received 26 July 2014; Revised 12 October 2014; Accepted 17 October 2014

Academic Editor: Yi Fu Yang

Copyright © 2015 Xiaolong Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W.-J. Zhang, H. Wei, and B. Frei, “Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo,” Free Radical Biology and Medicine, vol. 46, no. 6, pp. 791–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Menon, R. Coll, L. A. J. O'Neill et al., “Glutathione transferase Omega 1 is required for the LPS stimulated induction of NADPH Oxidase 1 and the production of reactive oxygen species in macrophages,” Free Radical Biology & Medicine, 2014. View at Google Scholar
  3. Y. Emre, C. Hurtaud, T. Nübel, F. Criscuolo, D. Ricquier, and A.-M. Cassard-Doulcier, “Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages,” Biochemical Journal, vol. 402, no. 2, pp. 271–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Zhai, S. E. Gomez-Mejiba, M. S. Gimenez et al., “Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide,” Free Radical Biology and Medicine, vol. 53, no. 1, pp. 172–181, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Ma, “Role of Nrf2 in oxidative stress and toxicity,” Annual Review of Pharmacology and Toxicology, vol. 53, pp. 401–426, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. K.-J. Min, J. T. Lee, E.-H. Joe, and T. K. Kwon, “An IκBα phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-κB-independent mechanism,” Cellular Signalling, vol. 23, no. 9, pp. 1505–1513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. W. Ryter and A. M. K. Choi, “Heme oxygenase-1: redox regulation of a stress protein in lung and cell culture models,” Antioxidants and Redox Signaling, vol. 7, no. 1-2, pp. 80–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. W. Chung, X. Liu, A. A. Macias, R. M. Baron, and M. A. Perrella, “Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 239–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. G. Abraham and A. Kappas, “Heme oxygenase and the cardiovascular-renal system,” Free Radical Biology and Medicine, vol. 39, no. 1, pp. 1–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Ryter, J. Alam, and A. M. K. Choi, “Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications,” Physiological Reviews, vol. 86, no. 2, pp. 583–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Johnson, D. A. Johnson, A. D. Kraft et al., “The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration,” Annals of the New York Academy of Sciences, vol. 1147, pp. 61–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ren, N. F. Villeneuve, T. Jiang et al., “Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1433–1438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Nakaso, H. Yano, Y. Fukuhara, T. Takeshima, K. Wada-Isoe, and K. Nakashima, “PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells,” FEBS Letters, vol. 546, no. 2-3, pp. 181–184, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Qi, Y. Han, and J. Rong, “Potential roles of PI3K/Akt and Nrf2-Keap1 pathways in regulating hormesis of Z-ligustilide in PC12 cells against oxygen and glucose deprivation,” Neuropharmacology, vol. 62, no. 4, pp. 1659–1670, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. L. C. Cantley, “The phosphoinositide 3-kinase pathway,” Science, vol. 296, no. 5573, pp. 1655–1657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Brunet, S. R. Datta, and M. E. Greenberg, “Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway,” Current Opinion in Neurobiology, vol. 11, no. 3, pp. 297–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Meng, M. Wang, X. Wang et al., “Suppression of NADPH oxidase- and mitochondrion-derived superoxide by Notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways,” Free Radical Research, 2014. View at Publisher · View at Google Scholar
  19. P. Vitaglione, F. Morisco, N. Caporaso, and V. Fogliano, “Dietary antioxidant compounds and liver health,” Critical Reviews in Food Science and Nutrition, vol. 44, no. 7-8, pp. 575–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Tapias, J. R. Cannon, and J. T. Greenamyre, “Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease,” Neurobiology of Aging, vol. 35, no. 5, pp. 1162–1176, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Spilmont, L. Leotoing, M. J. Davicco et al., “Pomegranate and its derivatives can improve bone health through decreased inflammation and oxidative stress in an animal model of postmenopausal osteoporosis,” European Journal of Nutrition, vol. 53, no. 5, pp. 1155–1164, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. V. M. Adhami, I. A. Siddiqui, D. N. Syed, R. K. Lall, and H. Mukhtar, “Oral infusion of pomegranate fruit extract inhibits prostate carcinogenesis in the TRAMP model,” Carcinogenesis, vol. 33, no. 3, pp. 644–651, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Khan, F. Afaq, M.-H. Kweon, K. Kim, and H. Mukhtar, “Oral consumption of pomegranate fruit extract inhibits growth and progression of primary lung tumors in mice,” Cancer Research, vol. 67, no. 7, pp. 3475–3482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Xu, P. Yin, C. Wan et al., “Punicalagin Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4-Mediated MAPKs and NF-κB Activation,” Inflammation, vol. 37, no. 3, pp. 956–965, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Qi, C. Ouyang, Y. Wang et al., “HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/ Akt signaling pathway in stroke,” Brain Research, vol. 1577, pp. 69–76, 2014. View at Google Scholar
  26. N. P. Seeram, L. S. Adams, S. M. Henning et al., “In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice,” Journal of Nutritional Biochemistry, vol. 16, no. 6, pp. 360–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Bishayee, D. Bhatia, R. J. Thoppil, A. S. Darvesh, E. Nevo, and E. P. Lansky, “Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms,” Carcinogenesis, vol. 32, no. 6, pp. 888–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. E. P. Lansky and R. A. Newman, “Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer,” Journal of Ethnopharmacology, vol. 109, no. 2, pp. 177–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Ismail, P. Sestili, and S. Akhtar, “Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects,” Journal of Ethnopharmacology, vol. 143, no. 2, pp. 397–405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Aqil, M. V. Vadhanam, and R. C. Gupta, “Enhanced activity of punicalagin delivered via polymeric implants against benzo[a]pyrene-induced DNA adducts,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 743, no. 1-2, pp. 59–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. I. Gil, F. A. Tomas-Barberan, B. Hess-Pierce, D. M. Holcroft, and A. A. Kader, “Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 4581–4589, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Chen, M. G. Tuuli, M. S. Longtine et al., “Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts,” American Journal of Physiology: Endocrinology and Metabolism, vol. 302, no. 9, pp. E1142–E1152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Aqil, R. Munagala, M. V. Vadhanam et al., “Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk,” Food Research International, vol. 49, no. 1, pp. 345–353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Paine, B. Eiz-Vesper, R. Blasczyk, and S. Immenschuh, “Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1895–1903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Zhang, J. Hirahashi, X. Cullere, and T. N. Mayadas, “Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation,” Journal of Biological Chemistry, vol. 278, no. 31, pp. 28443–28454, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. E. Lee, S. I. Jeong, H. Yang et al., “Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 541–548, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. I. S. Choi, E.-Y. Choi, J.-Y. Jin, H. R. Park, J.-I. Choi, and S.-J. Kim, “Kaempferol inhibits P. intermedia lipopolysaccharide-induced production of nitric oxide through translational regulation in murine macrophages: critical role of heme oxygenase-1-mediated ROS reduction,” Journal of Periodontology, vol. 84, no. 4, pp. 545–555, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-S. Wang, F.-M. Ho, H.-C. Kang, W.-W. Lin, and K.-C. Huang, “Celecoxib induces heme oxygenase-1 expression in macrophages and vascular smooth muscle cells via ROS-dependent signaling pathway,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 383, no. 2, pp. 159–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Alam, D. Stewart, C. Touchard, S. Boinapally, A. M. K. Choi, and J. L. Cook, “Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26071–26078, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Braun, C. Hanselmann, M. G. Gassmann et al., “Nrf2 transcription factor, a novel target of keratinocyte growth factor action which regulates gene expression and inflammation in the healing skin wound,” Molecular and Cellular Biology, vol. 22, no. 15, pp. 5492–5505, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. H.-Y. Cho, S. P. Reddy, and S. R. Kleeberger, “Nrf2 defends the lung from oxidative stress,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 76–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. D. F. Lee, H. P. Kuo, M. Liu et al., “KEAP1 E3 ligase-mediated downregulation of NF-κB signaling by targeting IKKβ,” Molecular Cell, vol. 36, no. 1, pp. 131–140, 2009. View at Publisher · View at Google Scholar
  43. R. G. Jayasooriya, K.-T. Lee, H. J. Lee, Y. H. Choi, J. W. Jeong, and G. Y. Kim, “Anti-inflammatory effects of β-hydroxyisovalerylshikonin in BV2 microglia are mediated through suppression of the PI3K/Akt/NF-kB pathway and activation of the Nrf2/HO-1 pathway,” Food and Chemical Toxicology, vol. 65, pp. 82–89, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Martin, A. I. Rojo, M. Salinas et al., “Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol,” The Journal of Biological Chemistry, vol. 279, no. 10, pp. 8919–8929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Zhang, W. Cui, G. Li et al., “Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways,” Journal of Agricultural and Food Chemistry, vol. 60, no. 33, pp. 8171–8182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Wuerges, J.-W. Lee, Y.-I. Yim, H.-S. Yim, S.-O. Kang, and K. D. Carugo, “Crystal structure of nickel-containing superoxide dismutase reveals another type of active site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8569–8574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Itoh, M. Koketsu, N. Yokota, S. Touho, M. Ando, and Y. Tsukamasa, “Reduced scytonemin isolated from Nostoc commune suppresses LPS/IFNγ-induced NO production in murine macrophage RAW264 cells by inducing hemeoxygenase-1 expression via the Nrf2/ARE pathway,” Food and Chemical Toxicology, vol. 69, pp. 330–338, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. J.-H. Kim, G.-Y. Park, S. Y. Bang, S. Y. Park, S.-K. Bae, and Y. Kim, “Crocin suppresses LPS-stimulated expression of inducible nitric oxide synthase by upregulation of heme oxygenase-1 via calcium/calmodulin-dependent protein kinase 4,” Mediators of Inflammation, vol. 2014, Article ID 728709, 14 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Y. Gohar, S. M. El-Gowilly, H. M. El-Gowelli, M. A. El-Demellawy, and M. M. El-Mas, “PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones,” PLoS ONE, vol. 9, no. 4, Article ID e95079, 2014. View at Publisher · View at Google Scholar · View at Scopus