Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016 (2016), Article ID 1536047, 12 pages
http://dx.doi.org/10.1155/2016/1536047
Research Article

FFAR4 (GPR120) Signaling Is Not Required for Anti-Inflammatory and Insulin-Sensitizing Effects of Omega-3 Fatty Acids

1Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
2The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
4National Institute of Nutrition and Seafood Research, Bergen, Norway
5BGI-Shenzhen, Shenzhen, China

Received 1 April 2016; Revised 13 July 2016; Accepted 7 August 2016

Academic Editor: William Festuccia

Copyright © 2016 Simone Isling Pærregaard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Osborn and J. M. Olefsky, “The cellular and signaling networks linking the immune system and metabolism in disease,” Nature Medicine, vol. 18, no. 3, pp. 363–374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Madsen, R. K. Petersen, and K. Kristiansen, “Regulation of adipocyte differentiation and function by polyunsaturated fatty acids,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1740, no. 2, pp. 266–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006. View at Publisher · View at Google Scholar
  5. L. K. Heilbronn and L. V. Campbell, “Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity,” Current Pharmaceutical Design, vol. 14, no. 12, pp. 1225–1230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Olefsky and C. K. Glass, “Macrophages, inflammation, and insulin resistance,” Annual Review of Physiology, vol. 72, no. 1, pp. 219–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Cai, M. Yuan, D. F. Frantz et al., “Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB,” Nature Medicine, vol. 11, no. 2, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Hirosumi, G. Tuncman, L. Chang et al., “A central role for JNK in obesity and insulin resistance,” Nature, vol. 420, no. 6913, pp. 333–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Emanuelli, P. Peraldi, C. Filloux et al., “SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-α in the adipose tissue of obese mice,” The Journal of Biological Chemistry, vol. 276, no. 51, pp. 47944–47949, 2001. View at Google Scholar · View at Scopus
  11. J. J. Senn, P. J. Klover, I. A. Nowak et al., “Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes,” Journal of Biological Chemistry, vol. 278, no. 16, pp. 13740–13746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Sabio, M. Das, A. Mora et al., “A stress signaling pathway in adipose tissue regulates hepatic insulin resistance,” Science, vol. 322, no. 5907, pp. 1539–1543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. T. Samuel and G. I. Shulman, “Mechanisms for insulin resistance: common threads and missing links,” Cell, vol. 148, no. 5, pp. 852–871, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Perry, V. T. Samuel, K. F. Petersen, and G. I. Shulman, “The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes,” Nature, vol. 510, no. 7503, pp. 84–91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Booth, A. Magnuson, and M. Foster, “Detrimental and protective fat: body fat distribution and its relation to metabolic disease,” Hormone Molecular Biology and Clinical Investigation, vol. 17, no. 1, pp. 13–27, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. R. N. Bergman, S. P. Kim, K. J. Catalano et al., “Why visceral fat is bad: mechanisms of the metabolic syndrome,” Obesity, vol. 14, supplement 1, pp. 16S–19S, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Y. Oh, S. Talukdar, E. J. Bae et al., “GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects,” Cell, vol. 142, no. 5, pp. 687–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Raptis, P. Limani, J. H. Jang et al., “GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids,” Journal of Hepatology, vol. 60, no. 3, pp. 625–632, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. A. N. Anbazhagan, S. Priyamvada, T. Gujral et al., “A novel anti-inflammatory role of GPR120 in intestinal epithelial cells,” American Journal of Physiology—Cell Physiology, vol. 310, no. 7, pp. C612–C621, 2016. View at Publisher · View at Google Scholar
  20. D. E. Cintra, E. R. Ropelle, J. C. Moraes et al., “Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity,” PLoS ONE, vol. 7, no. 1, article e30571, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Ichimura, A. Hirasawa, O. Poulain-Godefroy et al., “Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human,” Nature, vol. 483, no. 7389, pp. 350–354, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Y. Oh, E. Walenta, T. E. Akiyama et al., “A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice,” Nature Medicine, vol. 20, no. 8, pp. 942–947, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Bjursell, X. Xu, T. Admyre et al., “The beneficial effects of n-3 polyunsaturated fatty acids on diet induced obesity and impaired glucose control do not require Gpr120,” PLoS ONE, vol. 9, no. 12, Article ID e114942, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Brandauer, M. A. Andersen, H. Kellezi et al., “AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD,” Frontiers in Physiology, vol. 6, article 85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Folch, M. Lees, and G. H. Sloane stanley, “A simple method for the isolation and purification of total lipides from animal tissues,” The Journal of Biological Chemistry, vol. 226, no. 1, pp. 497–509, 1957. View at Google Scholar · View at Scopus
  26. L. D. Høeg, K. A. Sjøberg, J. Jeppesen et al., “Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling,” Diabetes, vol. 60, no. 1, pp. 64–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Cartoni, K. Yasumatsu, T. Ohkuri et al., “Taste preference for fatty acids is mediated by GPR40 and GPR120,” The Journal of Neuroscience, vol. 30, no. 25, pp. 8376–8382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Fiamoncini, N. Turner, S. M. Hirabara et al., “Enhanced peroxisomal β-oxidation is associated with prevention of obesity and glucose intolerance by fish oil-enriched diets,” Obesity, vol. 21, no. 6, pp. 1200–1207, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. A. S. Lihn, S. B. Pedersen, and B. Richelsen, “Adiponectin: action, regulation and association to insulin sensitivity,” Obesity Reviews, vol. 6, no. 1, pp. 13–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Gutiérrez-Juárez, A. Pocai, C. Mulas et al., “Critical role of stearoyl-CoA desaturase—1 (SCD1) in the onset of diet-induced hepatic insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1686–1695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Medina-Gomez, S. L. Gray, L. Yetukuri et al., “PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism,” PLoS Genetics, vol. 3, no. 4, pp. 0634–0647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Cildir, S. C. Akincilar, and V. Tergaonkar, “Chronic adipose tissue inflammation: all immune cells on the stage,” Trends in Molecular Medicine, vol. 19, no. 8, pp. 487–500, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. K. S. Sidhu, “Health benefits and potential risks related to consumption of fish or fish oil,” Regulatory Toxicology and Pharmacology, vol. 38, no. 3, pp. 336–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Cameron-Smith, B. B. Albert, and W. S. Cutfield, “Fishing for answers: is oxidation of fish oil supplements a problem?” Journal of Nutritional Science, vol. 4, article e36, 2015. View at Publisher · View at Google Scholar
  35. L. Madsen and K. Kristiansen, “Of mice and men: factors abrogating the antiobesity effect of omega-3 fatty acids,” Adipocyte, vol. 1, no. 3, pp. 173–176, 2012. View at Publisher · View at Google Scholar
  36. S. Neschen, K. Morino, J. C. Rossbacher et al., “Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice,” Diabetes, vol. 55, no. 4, pp. 924–928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sekiya, N. Yahagi, T. Matsuzaka et al., “Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression,” Hepatology, vol. 38, no. 6, pp. 1529–1539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Frøyland, L. Madsen, H. Vaagenes et al., “Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism,” Journal of Lipid Research, vol. 38, no. 9, pp. 1851–1858, 1997. View at Google Scholar · View at Scopus
  39. M. Kim, T. Goto, R. Yu et al., “Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system,” Scientific Reports, vol. 5, article 18013, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. A. González-Périz, R. Horrillo, N. Ferré et al., “Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins,” The FASEB Journal, vol. 23, no. 6, pp. 1946–1957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. L. K. Philp, L. K. Heilbronn, A. Janovska, and G. A. Wittert, “Dietary enrichment with fish oil prevents high fat-induced metabolic dysfunction in skeletal muscle in mice,” PLoS ONE, vol. 10, no. 2, Article ID e0117494, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. N. S. Kalupahana, K. J. Claycombe, and N. Moustaid-Moussa, “(n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights,” Advances in Nutrition, vol. 2, no. 4, pp. 304–316, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-P. Després and I. Lemieux, “Abdominal obesity and metabolic syndrome,” Nature, vol. 444, no. 7121, pp. 881–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Ulven and E. Christiansen, “Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120,” Annual Review of Nutrition, vol. 35, no. 1, pp. 239–263, 2015. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Xu, M. T. Nakamura, H. P. Cho, and S. D. Clarke, “Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats,” The Journal of Biological Chemistry, vol. 274, no. 33, pp. 23577–23583, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Xu, L. Chen, L. Leung, T. S. B. Yen, C. Lee, and J. Y. Chan, “Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 11, pp. 4120–4125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. A. Mori, M. Liu, O. Bezy et al., “A systems biology approach identifies inflammatory abnormalities between mouse strains prior to development of metabolic disease,” Diabetes, vol. 59, no. 11, pp. 2960–2971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Ubeda, L. Lipuma, A. Gobourne et al., “Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice,” Journal of Experimental Medicine, vol. 209, no. 8, pp. 1445–1456, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Wall, R. P. Ross, G. F. Fitzgerald, and C. Stanton, “Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids,” Nutrition Reviews, vol. 68, no. 5, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Spite, J. Clària, and C. N. Serhan, “Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases,” Cell Metabolism, vol. 19, no. 1, pp. 21–36, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. P. J. White, P. St-Pierre, A. Charbonneau et al., “Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis,” Nature Medicine, vol. 20, no. 6, pp. 664–669, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. P. C. Calder, “Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale,” Biochimie, vol. 91, no. 6, pp. 791–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. L. K. Midtbø, A. G. Borkowska, A. Bernhard et al., “Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice,” Journal of Nutritional Biochemistry, vol. 26, no. 6, pp. 585–595, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. A. R. Alvheim, M. K. Malde, D. Osei-Hyiaman et al., “Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity,” Obesity, vol. 20, no. 10, pp. 1984–1994, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Rossmeisl, Z. Macek Jilkova, O. Kuda et al., “Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids,” PLoS ONE, vol. 7, no. 6, Article ID e38834, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Yan, W. Jiang, T. Spinetti et al., “Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation,” Immunity, vol. 38, no. 6, pp. 1154–1163, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Wahli and L. Michalik, “PPARs at the crossroads of lipid signaling and inflammation,” Trends in Endocrinology and Metabolism, vol. 23, no. 7, pp. 351–363, 2012. View at Publisher · View at Google Scholar · View at Scopus