Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016 (2016), Article ID 3687420, 9 pages
http://dx.doi.org/10.1155/2016/3687420
Research Article

The Expression of T Cell FOXP3 and T-Bet Is Upregulated in Severe but Not Euthyroid Hashimoto’s Thyroiditis

1Department of Molecular Diagnostics and Tissue Typing, Osijek University Hospital, Josipa Huttlera 4, 31000 Osijek, Croatia
2Faculty of Medicine, University of Osijek, Cara Hadrijana 10E, 31000 Osijek, Croatia
3Laboratory of Immunogenomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, 775 20 Olomouc, Czech Republic
4Clinical Institute of Nuclear Medicine and Radiation Protection, Osijek University Hospital, Josipa Huttlera 4, 31000 Osijek, Croatia

Received 9 February 2016; Revised 20 May 2016; Accepted 1 June 2016

Academic Editor: Anshu Agrawal

Copyright © 2016 Stana Tokić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Stassi and R. De Maria, “Autoimmune thyroid disease: new models of cell death in autoimmunity,” Nature Reviews Immunology, vol. 2, no. 3, pp. 195–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Horie, N. Abiru, Y. Nagayama et al., “T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice,” Endocrinology, vol. 150, no. 11, pp. 5135–5142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Figueroa-Vega, M. Alfonso-Pérez, I. Benedicto, F. Sánchez-Madrid, R. González-Amaro, and M. Marazuela, “Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto's thyroiditis,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 953–962, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Shi, H. Wang, Z. Su et al., “Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto's thyroiditis,” Scandinavian Journal of Immunology, vol. 72, no. 3, pp. 250–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Li, W. Cai, R. Gu et al., “Th17 cell plays a role in the pathogenesis of Hashimoto's thyroiditis in patients,” Clinical Immunology, vol. 149, pp. 411–420, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Nanba, M. Watanabe, N. Inoue, and Y. Iwatani, “Increases of the Th1/Th2 cell ratio in severe Hashimoto's disease and in the proportion of Th17 cells in intractable Graves' disease,” Thyroid, vol. 19, no. 5, pp. 495–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Liu, X. Tang, J. Tian et al., “Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto’s thyroiditis,” International Journal of Molecular Sciences, vol. 15, no. 12, pp. 21674–21686, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Xue, X. Yu, L. Ma et al., “The possible role of CD4+CD25highFoxp3+/CD4+IL-17A+ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis,” Endocrine, vol. 50, no. 3, pp. 665–673, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Grenningloh, Y. K. Bok, and I.-C. Ho, “Ets-1, a functional cofactor of T-bet, is essential for Th1 inflammatory responses,” Journal of Experimental Medicine, vol. 201, no. 4, pp. 615–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-W. Tsao, T.-S. Tai, W. Tseng et al., “Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 39, pp. 15776–15781, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Mouly, K. Chemin, H. V. Nguyen et al., “The Ets-1 transcription factor controls the development and function of natural regulatory T cells,” Journal of Experimental Medicine, vol. 207, no. 10, pp. 2113–2125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Cimmino, G. A. Martins, J. Liao et al., “Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression,” Journal of Immunology, vol. 181, no. 4, pp. 2338–2347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Martins, L. Cimmino, J. Liao, E. Magnusdottir, and K. Calame, “Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 1959–1965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Cretney, A. Xin, W. Shi et al., “The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells,” Nature Immunology, vol. 12, no. 4, pp. 304–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. V. Dang, J. Barbi, H.-Y. Yang et al., “Control of TH17/Treg balance by hypoxia-inducible factor 1,” Cell, vol. 146, no. 5, pp. 772–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Štefanić, S. Papić, M. Suver, L. Glavaš-Obrovac, and I. Karner, “Association of vitamin D receptor gene 3'-variants with Hashimoto's thyroiditis in the Croatian population,” International Journal of Immunogenetics, vol. 35, no. 2, pp. 125–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Böyum, “Separation of leukocytes from blood and bone marrow. Introduction,” Scandinavian Journal of Clinical And Laboratory Investigation, Supplementum, vol. 97, article 7, 1968. View at Google Scholar
  18. P. Chomczynski and N. Sacchi, “Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction,” Analytical Biochemistry, vol. 162, no. 1, pp. 156–159, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Research, vol. 29, no. 9, article e45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Horie, N. Abiru, H. Sakamoto, Y. Iwakura, and Y. Nagayama, “Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-γ receptor, knockout nonobese diabetic-H2h4 mice,” Endocrinology, vol. 152, no. 11, pp. 4448–4454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Oh and E. S. Hwang, “The role of protein modifications of T-bet in cytokine production and differentiation of t helper cells,” Journal of Immunology Research, vol. 2014, Article ID 589672, 7 pages, 2014. View at Publisher · View at Google Scholar
  22. Q. Qin, P. Liu, L. Liu et al., “The increased but non-predominant expression of Th17- and Th1-specific cytokines in hashimoto's thyroiditis but not in graves' disease,” Brazilian Journal of Medical and Biological Research, vol. 45, no. 12, pp. 1202–1208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Karanikas, M. Schuetz, K. Wahl et al., “Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto's thyroiditis,” Clinical Endocrinology, vol. 63, no. 2, pp. 191–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. A.-C. Gérard, M. Boucquey, M.-F. Van Den Hove, and I. M. Colin, “Expression of TPO and ThOXs in human thyrocytes is downregulated by IL-1α/IFN-γ, an effect partially mediated by nitric oxide,” American Journal of Physiology—Endocrinology and Metabolism, vol. 291, no. 2, pp. E242–E253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Marique, V. Van Regemorter, A.-C. Gérard et al., “The expression of dual oxidase, thyroid peroxidase, and caveolin-1 differs according to the type of immune response (TH1/TH2) involved in thyroid autoimmune disorders,” Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 5, pp. 1722–1732, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. H. W. Su, J. D. Bretz, E. Phelps et al., “A unique combination of inflammatory cytokines enhances apoptosis of thyroid follicular cells and transforms nondestructive to destructive thyroiditis in experimental autoimmune thyroiditis,” Journal of Immunology, vol. 168, no. 5, pp. 2470–2474, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Marazuela, M. A. García-López, N. Figueroa-Vega et al., “Regulatory T cells in human autoimmune thyroid disease,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 9, pp. 3639–3646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. V. De Rosa, M. Galgani, A. Porcellini et al., “Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants,” Nature Immunology, vol. 16, no. 11, pp. 1174–1184, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Kristensen, L. Hegedüs, H. O. Madsen, T. J. Smith, and C. H. Nielsen, “Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis,” Clinical and Experimental Immunology, vol. 180, no. 1, pp. 58–69, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. L. R. Ryder, A. Woetmann, H. O. Madsen et al., “Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 39, no. 4, pp. 279–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Ban, A. Andoh, M. Shioya, A. Nishida, T. Tsujikawa, and Y. Fujiyama, “Increased number of FoxP3+CD4+ regulatory T cells in inflammatory bowel disease,” Molecular Medicine Reports, vol. 1, no. 5, pp. 647–650, 2008. View at Google Scholar · View at Scopus
  32. A. Nakano, M. Watanabe, T. Iida et al., “Apoptosis-induced decrease of intrathyroidal CD4+CD25+ regulatory T cells in autoimmune thyroid diseases,” Thyroid, vol. 17, no. 1, pp. 25–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Mao, S. Wang, Y. Xiao et al., “Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves' disease,” Journal of Immunology, vol. 186, no. 8, pp. 4734–4743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. R. van Amelsfort, K. M. G. Jacobs, J. W. J. Bijlsma, F. P. J. G. Lafeber, and L. S. Taams, “CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid,” Arthritis and Rheumatism, vol. 50, no. 9, pp. 2775–2785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. González-Amaro and M. Marazuela, “T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity,” Endocrine, vol. 52, no. 1, pp. 30–38, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Li and V. A. Boussiotis, “Molecular and functional heterogeneity of T regulatory cells,” Clinical Immunology, vol. 141, no. 3, pp. 244–252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Koch, G. Tucker-Heard, N. R. Perdue, J. R. Killebrew, K. B. Urdahl, and D. J. Campbell, “The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation,” Nature Immunology, vol. 10, no. 6, pp. 595–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Yu, S. Sharma, J. Edwards, L. Feigenbaum, and J. Zhu, “Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance,” Nature Immunology, vol. 16, no. 2, pp. 197–206, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Tian, J. A. Altin, L. E. Makaroff et al., “Foxp3+ regulatory T cells exert asymmetric control over murine helper responses by inducing Th2 cell apoptosis,” Blood, vol. 118, no. 7, pp. 1845–1853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Hua, S. P. Davis, J. A. Hill, and T. Yamagata, “Diverse gene expression in human Regulatory T cell subsets uncovers connection between regulatory T cell genes and suppressive function,” Journal of Immunology, vol. 195, no. 8, pp. 3642–3653, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Li, Y. Liang, M. Leblanc, C. Benner, and Y. Zheng, “Function of a foxp3 cis-element in protecting regulatory T cell identity,” Cell, vol. 158, no. 4, pp. 734–748, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. M. H. Lin, L. T. Yeh, S. J. Chen et al., “T cell-specific BLIMP-1 deficiency exacerbates experimental autoimmune encephalomyelitis in nonobese diabetic mice by increasing Th1 and Th17 cells,” Clinical Immunology, vol. 151, no. 2, pp. 101–113, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Moisan, R. Grenningloh, E. Bettelli, M. Oukka, and I.-C. Ho, “Ets-1 is a negative regulator of Th17 differentiation,” Journal of Experimental Medicine, vol. 204, no. 12, pp. 2825–2835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. J. K. Polansky, L. Schreiber, C. Thelemann et al., “Methylation matters: Binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 1029–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Cretney, A. Xin, W. Shi et al., “The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells,” Nature Immunology, vol. 12, no. 4, pp. 304–312, 2011. View at Publisher · View at Google Scholar · View at Scopus