Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016 (2016), Article ID 6757154, 12 pages
http://dx.doi.org/10.1155/2016/6757154
Review Article

Thyroid Hormones, Oxidative Stress, and Inflammation

1Operative Unit of Endocrinology, Catholic University of the Sacred Heart, 00168 Rome, Italy
2Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168 Rome, Italy
3Institute of Pharmacology, Catholic University of the Sacred Heart, 00168 Rome, Italy

Received 31 December 2015; Revised 14 February 2016; Accepted 15 February 2016

Academic Editor: Joilson O. Martins

Copyright © 2016 Antonio Mancini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Lancaster, “Nitric oxide in cells,” American Scientist, vol. 80, pp. 249–259, 1992. View at Google Scholar
  2. G. P. Littarru, Energy and Defence, CESI, Roma, Italy, 1994.
  3. D. Kang and N. Hamasaki, “Mitochondrial oxidative stress and mitochondrial DNA,” Clinical Chemistry and Laboratory Medicine, vol. 41, no. 10, pp. 1281–1288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Wink, H. B. Hines, R. Y. S. Cheng et al., “Nitric oxide and redox mechanisms in the immune response,” Journal of Leukocyte Biology, vol. 89, no. 6, pp. 873–891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Le Bras, M.-V. Clément, S. Pervaiz, and C. Brenner, “Reactive oxygen species and the mitochondrial signaling pathway of cell death,” Histology and Histopathology, vol. 20, no. 1, pp. 205–220, 2005. View at Google Scholar · View at Scopus
  7. H. Mangge, K. Becker, D. Fuchs, and J. M. Gostner, “Antioxidants, inflammation and cardiovascular disease,” World Journal of Cardiology, vol. 6, no. 6, pp. 462–477, 2014. View at Google Scholar
  8. B. Halliwell and J. M. C. Gutteridge, Free Radical in Biology and Medicine, Clarendon Press, Oxford, UK, 2nd edition, 1979.
  9. A. R. Cross and O. T. G. Jones, “Enzymic mechanism of superoxyde production,” Biochimica and Biophysica Acta, vol. 1057, pp. 281–284, 1991. View at Google Scholar
  10. H. Ohye and M. Sugawara, “Dual oxidase, hydrogen peroxide and thyroid diseases,” Experimental Biology and Medicine, vol. 235, no. 4, pp. 424–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Varela, C. M. Rivolta, S. A. Esperante, L. Gruneiro-Papendieck, A. Chiesa, and H. M. Targovnik, “Three mutations (p.Q36H, p.G418fsX482, and g.IVS19-2A>C) in the dual oxidase 2 gene responsible for congenital goiter and iodide organification defect,” Clinical Chemistry, vol. 52, no. 2, pp. 182–191, 2006. View at Google Scholar
  12. J. F. Turrens and A. Boveris, “Generation of superoxyde anion by the NADH dehydrogenase of bovine mitochondria,” The Biochemical Journal, vol. 191, pp. 421–427, 1980. View at Google Scholar
  13. S. P. Wolff, Z. Y. Jiang, and J. V. Hunt, “Protein glycation and oxidative stress in diabetes mellitus and ageing,” Free Radical Biology & Medicine, vol. 10, no. 5, pp. 339–352, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Codoñer-Franch, V. Valls-Bellés, A. Arilla-Codoñer, and E. Alonso-Iglesias, “Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress,” Translational Research, vol. 158, no. 6, pp. 369–384, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. B. Zimmermann and I. Aeberli, “Dietary determinants of subclinical inflammation, dyslipidemia and components of the metabolic syndrome in overweight children: a review,” International Journal of Obesity, vol. 32, supplement 6, pp. S11–S18, 2008. View at Google Scholar
  16. H. N. Siti, Y. Kamisah, and J. Kamsiah, “The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review),” Vascular Pharmacology, vol. 71, pp. 40–56, 2015. View at Publisher · View at Google Scholar
  17. I. J. Chopra, “Euthyroid sick syndrome: is it a misnomer?” The Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 2, pp. 329–334, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. L. J. De Groot, “Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence, should be treated with appropriate replacement therapies,” Critical Care Clinics, vol. 22, no. 1, pp. 57–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Mancini, S. Raimondo, C. Di Segni, M. Persano, and A. Pontecorvi, “Non-thyroidal illness: physiopathology and clinical implications,” in Current Topics in Hypothyroidism with Focus on Development, E. Potlukova, Ed., pp. 183–202, InTech, Rijeka, Croatia, 2013. View at Google Scholar
  20. M. F. Gregor and G. S. Hotamisligil, “Adipocyte stress: the endoplasmic reticulum and metabolic disease,” Journal of Lipid Research, vol. 48, no. 9, pp. 1905–1914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Sorisky, A. S. D. Molgat, and A. Gagnon, “Macrophage-induced adipose tissue dysfunction and the preadipocyte: should I stay (and differentiate) or should I go?” Advances in Nutrition, vol. 4, no. 1, pp. 67–75, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Iyer, D. P. Fairlie, J. B. Prins, B. D. Hammock, and L. Brown, “Inflammatory lipid mediators in adipocyte function and obesity,” Nature Reviews Endocrinology, vol. 6, no. 2, pp. 71–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Barhoumi, M. Briet, D. A. Kasal et al., “Erythropoietin-induced hypertension and vascular injury in mice overexpressing human endothelin-1: exercise attenuated hypertension, oxidative stress, inflammation and immune response,” Journal of Hypertension, vol. 32, no. 4, pp. 784–794, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. X.-F. Leong, M. N. M. Najib, S. Das, M. R. Mustafa, and K. Jaarin, “Intake of repeatedly heated palm oil causes elevation in blood pressure with impaired vasorelaxation in rats,” The Tohoku Journal of Experimental Medicine, vol. 219, no. 1, pp. 71–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Yamamoto, S. Shimizu, S. Kiyonaka et al., “TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration,” Nature Medicine, vol. 14, no. 7, pp. 738–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-H. Ko, W. Cao, and Z. Liu, “Hypertension management and microvascular insulin resistance in diabetes,” Current Hypertension Reports, vol. 12, no. 4, pp. 243–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Li, E. J. Barrett, M. O. Barrett, W. Cao, and Z. Liu, “Tumor necrosis factor-α induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway,” Endocrinology, vol. 148, no. 7, pp. 3356–3363, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Liu, J. Liu, L. A. Jahn, D. E. Fowler, and E. J. Barrett, “Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature,” Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 9, pp. 3543–3549, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. L. H. Clerk, S. Rattigan, and M. G. Clark, “Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo,” Diabetes, vol. 51, no. 4, pp. 1138–1145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Tripathy, P. Mohanty, S. Dhindsa et al., “Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects,” Diabetes, vol. 52, no. 12, pp. 2882–2887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. O. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin, and A. D. Baron, “Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production,” Diabetes, vol. 49, no. 7, pp. 1231–1238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Mancini, G. E. Martorana, M. Magini et al., “Oxidative stress and metabolic syndrome: effects of a natural antioxidants enriched diet on insulin resistance,” Clinical Nutrition ESPEN, vol. 10, no. 2, pp. e52–e60, 2015. View at Publisher · View at Google Scholar
  34. C.-Y. Ng, Y. Kamisah, O. Faizah, and K. Jaarin, “The role of repeatedly heated soybean oil in the development of hypertension in rats: association with vascular inflammation,” International Journal of Experimental Pathology, vol. 93, no. 5, pp. 377–387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Ryoo, A. Bhunia, F. Chang, A. Shoukas, D. E. Berkowitz, and L. H. Romer, “OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling,” Atherosclerosis, vol. 214, no. 2, pp. 279–287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Pirillo, G. D. Norata, and A. L. Catapano, “LOX-1, OxLDL, and atherosclerosis,” Mediators of Inflammation, vol. 2013, Article ID 152786, 12 pages, 2013. View at Publisher · View at Google Scholar
  37. K. Husain, W. Hernandez, R. A. Ansari, and L. Ferder, “Inflammation, oxidative stress and renin angiotensin system in atherosclerosis,” World Journal of Biological Chemisty, vol. 6, no. 3, pp. 209–217, 2015. View at Publisher · View at Google Scholar
  38. K. Husain, E. Suarez, A. Isidro, and L. Ferder, “Effects of paricalcitol and enalapril on atherosclerotic injury in mouse aortas,” American Journal of Nephrology, vol. 32, no. 4, pp. 296–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Suarez-Martinez, K. Husain, and L. Ferder, “Adiponectin expression and the cardioprotective role of the vitamin D receptor activator paricalcitol and the angiotensin converting enzyme inhibitor enalapril in ApoE-deficient mice,” Therapeutic Advances in Cardiovascular Disease, vol. 8, no. 6, pp. 224–236, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Lewis, N. Stefanovic, J. Pete et al., “Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice,” Circulation, vol. 115, no. 16, pp. 2178–2187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Mancini, E. Giacchi, S. Raimondo, C. Di Segni, A. Silvestrini, and E. Meucci, “Hypothyroidism, oxidative stress and reproduction,” in Hypothyroidism—Influences and Treatments, pp. 117–134, InTech, Rijeka, Croatia, 2012. View at Google Scholar
  42. U. Resch, G. Helsel, F. Tatzber, and H. Sinzinger, “Antioxidant status in thyroid dysfunction,” Clinical Chemistry and Laboratory Medicine, vol. 40, no. 11, pp. 1132–1134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Asayama and K. Kato, “Oxidative muscular injury and its relevance to hyperthyroidism,” Free Radical Biology and Medicine, vol. 8, no. 3, pp. 293–303, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. M. M. Dobrzyńska, A. Baumgartner, and D. Anderson, “Antioxidants modulate thyroid hormone- and noradrenaline-induced DNA damage in human sperm,” Mutagenesis, vol. 19, no. 4, pp. 325–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Venditti and S. Di Meo, “Thyroid hormone-induced oxidative stress,” Cellular and Molecular Life Sciences, vol. 63, no. 4, pp. 414–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. J. Kowaltowski, A. D. T. Costa, and A. E. Vercesi, “Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain,” FEBS Letters, vol. 425, no. 2, pp. 213–216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Rebiger, S. Lenzen, and I. Mehmeti, “Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species,” Bioscience Reports, 2016. View at Publisher · View at Google Scholar
  48. T. Hoang, M. Kuljanin, M. D. Smith, and M. Jelokhani-Niaraki, “A biophysical study on molecular physiology of the uncoupling proteins of the central nervous system,” Bioscience Reports, vol. 35, no. 4, Article ID e00226, 2015. View at Publisher · View at Google Scholar
  49. N. Potrović, G. Cvijić, and V. Davidović, “Thyroxine and tri-iodothyronine differently affect uncoupling protein-1 content and antioxidant enzyme activities in rat interscapular brown adipose tissue,” Journal of Endocrinology, vol. 176, no. 1, pp. 31–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Branco, M. Ribeiro, N. Negrão, and A. C. Bianco, “3,5,3′-triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 276, no. 1, pp. E179–E187, 1999. View at Google Scholar · View at Scopus
  51. S. Hima and S. Sreeja, “Regulatory role of estrogen-induced reactive oxygen species in the modulatory function of UCP 2 in papillary thyroid cancer cells,” IUBMB Life, vol. 67, no. 11, pp. 837–846, 2015. View at Publisher · View at Google Scholar
  52. P. Venditti, L. Di Stefano, and S. Di Meo, “Vitamin E management of oxidative damage-linked dysfunctions of hyperthyroid tissues,” Cellular and Molecular Life Sciences, vol. 70, no. 17, pp. 3125–3144, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Venditti, M. Balestrieri, S. Di Meo, and T. De Leo, “Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues,” Journal of Endocrinology, vol. 155, no. 1, pp. 151–157, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Fernandez, X. Barrientos, K. Kipreos, A. Valenzuela, and L. A. Videla, “Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation,” Endocrinology, vol. 117, no. 2, pp. 496–501, 1985. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Venditti, M. C. Daniele, P. Masullo, and S. Di Meo, “Antioxidant-sensitive triiodothyronine effects on characteristics of rat liver mitochondrial population,” Cellular Physiology and Biochemistry, vol. 9, no. 1, pp. 38–52, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Huh, T.-H. Kwon, J.-S. Kim, and J. M. Park, “Role of the hepatic xanthine oxidase in thyroid dysfunction: effect of thyroid hormones in oxidative stress in rat liver,” Archives of Pharmacal Research, vol. 21, no. 3, pp. 236–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Asayama, K. Dobashi, H. Hayashibe, Y. Megata, and K. Kato, “Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism,” Endocrinology, vol. 121, no. 6, pp. 2112–2118, 1987. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Choudhury, G. B. N. Chainy, and M. M. Mishro, “Experimentally induced hypo- and hyper-thyroidism influence on the antioxidant defence system in adult rat testis,” Andrologia, vol. 35, no. 3, pp. 131–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Ademoğlu, C. Gökkuşu, S. Yarman, and H. Azizlerli, “The effect of methimazole on the oxidant and antioxidant system in patients with hyperthyroidism,” Pharmacological Research, vol. 38, no. 2, pp. 93–96, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Bianchi, E. Solaroli, V. Zaccheroni et al., “Oxidative stress and anti-oxidant metabolites in patients with hyperthyroidism: effect of treatment,” Hormone and Metabolic Research, vol. 31, no. 11, pp. 620–624, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Mancini, L. De Marinis, F. Calabrò, C. Fiumara, A. Goglia, and G. P. Littarru, “Physiopathological relevance of coenzyme Q10 in thyroid disorders: CoQ10 concentrations in normal and diseased human thyroid tissue,” in Biomedical and Clinical Aspects of Coenzyme Q, K. Folkers, G. P. Littarru, and T. Yamagami, Eds., vol. 6, pp. 441–448, Elsevier Science Publisher, Amsterdam, The Netherlands, 1991. View at Google Scholar
  62. A. Mancini, L. De Marinis, F. Calabrò et al., “Evaluation of metabolic status in amiodarone-induced thyroid disorders: plasma coenzyme Q10 determination,” Journal of Endocrinological Investigation, vol. 12, no. 8, pp. 511–516, 1989. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Mancini, G. M. Corbo, A. Gaballo et al., “Relationships between plasma CoQ10 levels and thyroid hormones in chronic obstructive pulmonary disease,” BioFactors, vol. 25, no. 1–4, pp. 201–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Baskol, H. Atmaca, F. Tanriverdi, M. Baskol, D. Kocer, and F. Bayram, “Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment,” Experimental and Clinical Endocrinology & Diabetes, vol. 115, no. 8, pp. 522–526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. A. N. Torun, S. Kulaksizoglu, M. Kulaksizoglu, B. O. Pamuk, E. Isbilen, and N. B. Tutuncu, “Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism,” Clinical Endocrinology, vol. 70, no. 3, pp. 469–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Dardano, L. Ghiadoni, Y. Plantinga et al., “Recombinant human thyrotropin reduces endothelium-dependent vasodilation in patients monitored for differentiated thyroid carcinoma,” Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 10, pp. 4175–4178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Haribabu, V. S. Reddy, C. Pallavi et al., “Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism,” Endocrine, vol. 44, no. 1, pp. 152–157, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. M. J. Coria, A. I. Pastrán, and M. S. Gimenez, “Serum oxidative stress parameters of women with hypothyroidism,” Acta Biomedica Atenei Parmensis, vol. 80, pp. 135–139, 2009. View at Google Scholar
  69. H. Erdamar, H. Demirci, H. Yaman et al., “The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status,” Clinical Chemistry and Laboratory Medicine, vol. 46, no. 7, pp. 1004–1010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Azizi, F. Raiszadeh, M. Solati, A. Etemadi, M. Rahmani, and M. Arabi, “Serum paraoxonase 1 activity is decreased in thyroid dysfunction,” Journal of Endocrinological Investigation, vol. 26, no. 8, pp. 703–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Santi, M. M. M. F. Duarte, R. N. Moresco et al., “Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 11, pp. 1635–1639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Nanda, Z. Bobby, A. Hamide, B. C. Koner, and M. G. Sridhar, “Association between oxidative stress and coronary lipid risk factors in hypothyroid women is independent of body mass index,” Metabolism, vol. 56, no. 10, pp. 1350–1355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Kebapcilar, B. Akinci, F. Bayraktar et al., “Plasma thiobarbituric acid-reactive substance levels in subclinical hypothyroidism,” Medical Principles and Practice, vol. 16, no. 6, pp. 432–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Santi, M. M. M. F. Duarte, C. C. de Menezes, and V. L. Loro, “Association of lipids with oxidative stress biomarkers in subclinical hypothyroidism,” International Journal of Endocrinology, vol. 2012, Article ID 856359, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Mancini, R. Festa, V. Di Donna et al., “Hormones and antioxidant systems: role of pituitary and pituitary-dependent axes,” Journal of Endocrinological Investigation, vol. 33, no. 6, pp. 422–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Mancini, E. Leone, A. Silvestrini et al., “Evaluation of antioxidant systems in pituitary-adrenal axis diseases,” Pituitary, vol. 13, no. 2, pp. 138–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. U. Weyemi, B. Caillou, M. Talbot et al., “Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues,” Endocrine-Related Cancer, vol. 17, no. 1, pp. 27–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Sharma, K. Traore, M. A. Trush, N. R. Rose, and C. L. Burek, “Intracellular adhesion molecule-1 up-regulation on thyrocytes by iodine of non-obese diabetic.H2h4 mice is reactive oxygen species-dependent,” Clinical and Experimental Immunology, vol. 152, no. 1, pp. 13–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Ü. Öztürk, P. Vural, A. Özderya, B. Karadağ, S. Doğru-Abbasoğlu, and M. Uysal, “Oxidative stress parameters in serum and low density lipoproteins of Hashimoto's thyroiditis patients with subclinical and overt hypothyroidism,” International Immunopharmacology, vol. 14, no. 4, pp. 349–352, 2012. View at Publisher · View at Google Scholar
  80. A. S. da Rosa Araujo, M. F. Silva de Miranda, U. O. de Oliveira et al., “Increased resistance to hydrogen peroxide-induced cardiac contracture is associated with decreased myocardial oxidative stress in hypothyroid rats,” Cell Biochemistry and Function, vol. 28, no. 1, pp. 38–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. M. Estévez-Carmona, E. Meléndez-Camargo, R. Ortiz-Butron, M. Pineda-Reynoso, M. Franco-Colin, and E. Cano-Europa, “Hypothyroidism maintained reactive oxygen species-steady state in the kidney of rats intoxicated with ethylene glycol: effect related to an increase in the glutathione that maintains the redox environment,” Toxicology and Industrial Health, vol. 29, no. 6, pp. 555–566, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Cano-Europa, F. Pérez-Severiano, P. Vergara et al., “Hypothyroidism induces selective oxidative stress in amygdala and hippocampus of rat,” Metabolic Brain Disease, vol. 23, no. 3, pp. 275–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Pan, M. Zhong, X. Zhong, Y. Zhang, and D. Zhu, “Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism,” Endocrine, vol. 43, no. 2, pp. 434–439, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Cano-Europa, V. Blas-Valdivia, M. Franco-Colin, C. A. Gallardo-Casas, and R. Ortiz-Butrón, “Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney,” Acta Histochemica, vol. 113, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Ortiz-Butron, V. Blas-Valdivia, M. Franco-Colin, M. Pineda-Reynoso, and E. Cano-Europa, “An increase of oxidative stress markers and the alteration of the antioxidant enzymatic system are associated with spleen damage caused by methimazole-induced hypothyroidism,” Drug and Chemical Toxicology, vol. 34, no. 2, pp. 180–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Cano-Europa, V. Blas-Valdivia, G. E. Lopez-Galindo et al., “Methimazole-induced hypothyroidism causes alteration of the REDOX environment, oxidative stress, and hepatic damage; events not caused by hypothyroidism itself,” Annals of Hepatology, vol. 9, no. 1, pp. 80–88, 2010. View at Google Scholar
  87. I. Klein and S. Danzi, “Thyroid disease and the heart,” Circulation, vol. 116, no. 15, pp. 1725–1735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. M. T. Elnakish, A. A. E. Ahmed, P. J. Mohler, and P. M. Janssen, “Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 854265, 16 pages, 2015. View at Publisher · View at Google Scholar
  89. M. O. Akiibinu, O. A. Ogundahunsi, and E. O. Ogunyemi, “Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics,” BMC Research Notes, vol. 5, article 169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Zhang, L. Wang, Q. Duan et al., “Metallothionein-I/II knockout mice aggravate mitochondrial superoxide production and peroxiredoxin 3 expression in thyroid after excessive iodide exposure,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 267027, 11 pages, 2015. View at Publisher · View at Google Scholar
  91. M. Vitale, T. Di Matola, F. D'Ascoli et al., “Iodide excess induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress,” Endocrinology, vol. 141, no. 2, pp. 598–605, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. B. Corvilain, L. Collyn, J. van Sande, and J. E. Dumont, “Stimulation by iodide of H2O2 generation in thyroid slices from several species,” American Journal of Physiology—Endocrinology and Metabolism, vol. 278, no. 4, pp. E692–E699, 2000. View at Google Scholar · View at Scopus
  93. A. M. Y. Shum and P. Polly, “Cancer cachexia: molecular targets and pathways for diagnosis and drug intervention,” Endocrine, Metabolic & Immune Disorders—Drug Targets, vol. 12, no. 3, pp. 247–259, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. Y.-P. Li, R. J. Schwartz, I. D. Waddell, B. R. Holloway, and M. B. Reid, “Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α,” The FASEB Journal, vol. 12, no. 10, pp. 871–880, 1998. View at Google Scholar · View at Scopus
  95. S. T. Russell, H. Eley, and M. J. Tisdale, “Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II,” Cellular Signalling, vol. 19, no. 8, pp. 1797–1806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Suzuki, A. Asakawa, H. Amitani, N. Nakamura, and A. Inui, “Cancer cachexia—pathophysiology and management,” Journal of Gastroenterology, vol. 48, no. 5, pp. 574–594, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Mönig, T. Arendt, M. Meyer, S. Kloehn, and B. Bewig, “Activation of the hypothalamo-pituitary-adrenal axis in response to septic or non-septic diseases—implications for the enthyroid sick syndrome,” Intensive Care Medicine, vol. 25, no. 12, pp. 1402–1406, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. A. R. M. M. Hermus, C. G. J. Sweep, M. J. M. Van Der et al., “Continuous infusion of interleukin-1 induces a nonthyroidal illness syndrome in the rat,” Endocrinology, vol. 131, pp. 2139–2146, 1992. View at Google Scholar
  99. T. Van der Poll, J. A. Romijn, W. M. Wiersinga, and H. P. Sauerwein, “Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man,” Journal of Clinical Endocrinology & Metabolism, vol. 71, no. 6, pp. 1567–1572, 1990. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Van der Poll, E. Endert, S. M. Coyle, J. M. Agosti, and S. F. Lowry, “Neutralization of TNF does not influence endotoxin induced changes in thyroid hormone metabolism in humans,” American Journal of Physiology, vol. 276, no. 2, part 2, pp. R357–R362, 1999. View at Google Scholar
  101. T. Nagaya, M. Fujieda, G. Otsuka, J.-P. Yang, T. Okamoto, and H. Seo, “A potential role of activated NF-κB in the pathogenesis of euthyroid sick syndrome,” The Journal of Clinical Investigation, vol. 106, no. 3, pp. 393–402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Bartalena, S. Brogioni, L. Grasso, F. Velluzzi, and E. Martino, “Relationship of the increased serum interleukin-6 concentration to changes of thyroid function in nonthyroidal illness,” Journal of Endocrinological Investigation, vol. 17, no. 4, pp. 269–274, 1994. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Boelen, M. C. Platvoet-Ter Schiphorst, and W. M. Wiersinga, “Association between serum interleukin-6 and serum 3,5,3′-triiodothyronine in nonthyroidal illness,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 6, pp. 1695–1699, 1993. View at Publisher · View at Google Scholar · View at Scopus
  104. J. M. L. Stouthard, T. Van Der Poll, E. Endert et al., “Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 5, pp. 1342–1346, 1994. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Gereben, A. M. Zavacki, S. Ribich et al., “Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling,” Endocrine Reviews, vol. 29, no. 7, pp. 898–938, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Orozco, R. C. Valverde, A. Olvera, and G. C. García, “Iodothyronine deiodinases: a functional and evolutionary perspective,” Journal of Endocrinology, vol. 215, no. 2, pp. 207–219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. D. L. St Germain, V. A. Galton, and A. Hernandez, “Miniereview: defining the roles of the iodothyronine deiodinases: current concepts and challenges,” Endocrinology, vol. 150, no. 3, pp. 1097–1107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. U. Schweizer and C. Steegborn, “New insights into the structure and mechanism of iodothyronine deiodinases,” Journal of Molecular Endocrinology, vol. 55, no. 3, pp. R37–R52, 2015. View at Publisher · View at Google Scholar
  109. R. Arrojo E Drigo and A. C. Bianco, “Type 2 deiodinase at the crossroads of thyroid hormone action,” The International Journal of Biochemistry & Cell Biology, vol. 43, no. 10, pp. 1432–1441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. A. C. Bianco and B. W. Kim, “Deiodinases: implications of the local control of thyroid hormone action,” The Journal of Clinical Investigation, vol. 116, no. 10, pp. 2571–2579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Watanabe, S. M. Houten, C. Mataki et al., “Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation,” Nature, vol. 439, no. 7075, pp. 484–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. S. M. Wajner, I. M. Goemann, A. L. Bueno, P. R. Larsen, and A. L. Maia, “IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells,” The Journal of Clinical Investigation, vol. 121, no. 5, pp. 1834–1845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Mancini, E. Leone, V. Di Donna, and R. Festa, “Anorexia nervosa and cytokines,” in Anorexia Nervosa: A Multidisciplinary Approach, A. Mancini, S. Daini, and L. Caruana, Eds., pp. 31–49, Nova Science Publishers, New York, NY, USA, 2010. View at Google Scholar
  114. J. Abilés, A. P. de la Cruz, J. Castaño et al., “Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study,” Critical Care, vol. 10, no. 5, article R146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. A. L. Maia, B. W. Kim, S. A. Huang, J. W. Harney, and P. R. Larsen, “Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans,” The Journal of Clinical Investigation, vol. 115, no. 9, pp. 2524–2533, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. L. V. Papp, J. Lu, F. Striebel, D. Kennedy, A. Holmgren, and K. K. Khanna, “The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function,” Molecular and Cellular Biology, vol. 26, no. 13, pp. 4895–4910, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Marsili, A. M. Zavacki, J. W. Harney, and P. R. Larsen, “Physiological role and regulation of iodothyronine deiodinases: a 2011 update,” Journal of Endocrinological Investigation, vol. 34, no. 5, pp. 395–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. C. Balasz and K. Racz, “The role of selenium in endocrine system disease,” Orvosi Hetilap (Hungaria), vol. 154, no. 41, pp. 1628–1635, 2013. View at Publisher · View at Google Scholar
  119. G. G. J. M. Kuiper, M. H. A. Kester, R. P. Peeters, and T. J. Visser, “Biochemical mechanisms of thyroid hormone deiodination,” Thyroid, vol. 15, no. 8, pp. 787–798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. U. Schweizer and C. Steegborn, “New insights into the structure and mechanism of iodothyronine deiodinases,” Journal of Molecular Endocrinology, vol. 55, no. 3, pp. R37–R52, 2015. View at Publisher · View at Google Scholar
  121. S. M. Wajner, I. M. Goemann, A. L. Bueno, P. R. Larsen, and A. L. Maia, “IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells,” Journal of Clinical Investigation, vol. 121, no. 5, pp. 1834–1845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Vidart, S. M. Wajner, R. S. Leite et al., “N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial,” Journal of Clinical Endocrinology & Metabolism, vol. 99, no. 12, pp. 4537–4545, 2014. View at Publisher · View at Google Scholar · View at Scopus
  123. S. M. Wajner, H. C. Rohenkohl, T. Serrano, and A. L. Maia, “Sodium selenite supplementation does not fully restore oxidative stress-induced deiodinase dysfunction: implications for the nonthyroidal illness syndrome,” Redox Biology, vol. 6, pp. 436–445, 2015. View at Publisher · View at Google Scholar
  124. E. M. de Vries, E. Fliers, and A. Boelen, “The molecular basis of the non-thyroidal illness syndrome,” Journal of Endocrinology, vol. 225, no. 3, pp. R67–R81, 2015. View at Publisher · View at Google Scholar
  125. R. P. Peeters, P. J. Wouters, H. Van Toor, E. Kaptein, T. J. Visser, and G. Van Den Berghe, “Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 8, pp. 4559–4565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Rodriguez-Perez, F. Palos-Paz, E. Kaptein et al., “Identification of molecular mechanisms related to nonthyroidal illness syndrome in skeletal muscle and adipose tissue from patients with septic shock,” Clinical Endocrinology, vol. 68, no. 5, pp. 821–827, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Mebis, L. Langouche, T. J. Visser, and G. Van den Berghe, “The type II iodothyronine deiodinase is upregulated in skeletal muscle during prolonged critical illness,” The Journal of Clinical Endocrinology & Metabolism, vol. 92, no. 8, pp. 3330–3333, 2007. View at Google Scholar
  128. J. Kwakkel, O. V. Surovtseva, E. M. de Vries, J. Stap, E. Fliers, and A. Boelen, “A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages,” Endocrinology, vol. 155, no. 7, pp. 2725–2734, 2014. View at Publisher · View at Google Scholar · View at Scopus
  129. K. A. Heemstra, M. R. Soeters, E. Fliers et al., “Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting,” Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 6, pp. 2144–2150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. S.-F. Ma, L. Xie, M. Pino-Yanes et al., “Type 2 deiodinase and host responses of sepsis and acute lung injury,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 6, pp. 1203–1211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Boelen, J. Kwakkel, A. Alkemade et al., “Induction of type 3 deiodinase activity in inflammatory cells of mice with chronic local inflammation,” Endocrinology, vol. 146, no. 12, pp. 5128–5134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Boelen, J. Kwakkel, W. M. Wiersinga, and E. Fliers, “Chronic local inflammation in mice results in decreased TRH and type 3 deiodinase mRNA expression in the hypothalamic paraventricular nucleus independently of diminished food intake,” Journal of Endocrinology, vol. 191, no. 3, pp. 707–714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Debaveye, B. Ellger, L. Mebis et al., “Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2,” Endocrinology, vol. 146, no. 12, pp. 5604–5611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. R. P. Peeters, P. J. Wouters, E. Kaptein, H. van Toor, T. J. Visser, and G. Van Den Berghe, “Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients,” Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 7, pp. 3202–3211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. F. W. J. S. Wassen, A. E. Schiel, G. G. J. M. Kuiper et al., “Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure,” Endocrinology, vol. 143, no. 7, pp. 2812–2815, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. E. L. Olivares, M. P. Marassi, R. S. Fortunato et al., “Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats—a time course study,” Endocrinology, vol. 148, no. 10, pp. 4786–4792, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. C. Fekete, B. Gereben, M. Doleschall et al., “Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome,” Endocrinology, vol. 145, no. 4, pp. 1649–1655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Sánchez, P. S. Singru, G. Wittmann et al., “Contribution of TNF-α and nuclear factor-κB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration,” Endocrinology, vol. 151, no. 8, pp. 3827–3835, 2010. View at Publisher · View at Google Scholar · View at Scopus