Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016, Article ID 9012369, 15 pages
http://dx.doi.org/10.1155/2016/9012369
Review Article

Cancer Stem Cells and Macrophages: Implications in Tumor Biology and Therapeutic Strategies

1Department of Biochemistry, Autónoma University of Madrid, School of Medicine, 28018 Madrid, Spain
2Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC and UAM, 28018 Madrid, Spain
3Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane School of Medicine, New Orleans, LA 70118, USA

Received 19 November 2015; Accepted 31 December 2015

Academic Editor: Seth B. Coffelt

Copyright © 2016 Bruno Sainz Jr. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kreso and J. E. Dick, “Evolution of the cancer stem cell model,” Cell Stem Cell, vol. 14, no. 3, pp. 275–291, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Virchow, “An address on the value of pathological experiments,” The British Medical Journal, vol. 2, no. 1075, pp. 198–203, 1881. View at Publisher · View at Google Scholar
  3. T. Lapidot, C. Sirard, J. Vormoor et al., “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” Nature, vol. 367, no. 6464, pp. 645–648, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Li, D. G. Heidt, P. Dalerba et al., “Identification of pancreatic cancer stem cells,” Cancer Research, vol. 67, no. 3, pp. 1030–1037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. C. Hermann, S. L. Huber, T. Herrler et al., “Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer,” Cell Stem Cell, vol. 1, no. 3, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Eramo, L. Ricci-Vitiani, A. Zeuner et al., “Chemotherapy resistance of glioblastoma stem cells,” Cell Death & Differentiation, vol. 13, no. 7, pp. 1238–1241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Miranda-Lorenzo, J. Dorado, E. Lonardo et al., “Intracellular autofluorescence: a biomarker for epithelial cancer stem cells,” Nature Methods, vol. 11, no. 11, pp. 1161–1169, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. M. E. Prince, R. Sivanandan, A. Kaczorowski et al., “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 973–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. O'Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no. 7123, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi et al., “Identification and expansion of human colon-cancer-initiating cells,” Nature, vol. 445, no. 7123, pp. 111–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Patrawala, T. Calhoun, R. Schneider-Broussard et al., “Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells,” Oncogene, vol. 25, no. 12, pp. 1696–1708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Schatton, G. F. Murphy, N. Y. Frank et al., “Identification of cells initiating human melanomas,” Nature, vol. 451, no. 7176, pp. 345–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Quintana, M. Shackleton, M. S. Sabel, D. R. Fullen, T. M. Johnson, and S. J. Morrison, “Efficient tumour formation by single human melanoma cells,” Nature, vol. 456, no. 7222, pp. 593–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. V. Nguyen, R. Vanner, P. Dirks, and C. J. Eaves, “Cancer stem cells: an evolving concept,” Nature Reviews Cancer, vol. 12, no. 2, pp. 133–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Ishizawa, Z. A. Rasheed, R. Karisch et al., “Tumor-initiating cells are rare in many human tumors,” Cell Stem Cell, vol. 7, no. 3, pp. 279–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Merlos-Suárez, F. M. Barriga, P. Jung et al., “The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse,” Cell Stem Cell, vol. 8, no. 5, pp. 511–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Pece, D. Tosoni, S. Confalonieri et al., “Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content,” Cell, vol. 140, no. 1, pp. 62–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Todaro, M. G. Francipane, J. P. Medema, and G. Stassi, “Colon cancer stem cells: promise of targeted therapy,” Gastroenterology, vol. 138, no. 6, pp. 2151–2162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Bae, S. H. Park, J. H. Yang, K. Yang, and J. M. Yi, “Stem cell-like gene expression signature identified in ionizing radiation-treated cancer cells,” Gene, vol. 572, no. 2, pp. 285–291, 2015. View at Publisher · View at Google Scholar
  23. A. Kreso, C. A. O'Brien, P. van Galen et al., “Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer,” Science, vol. 339, no. 6119, pp. 543–548, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Dingwall, J. B. Lee, B. Guezguez et al., “Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells,” Oncotarget, vol. 6, no. 26, pp. 22258–22269, 2015. View at Google Scholar
  25. M. C. Santos, P. B. Silva, C. O. Rodini et al., “Embryonic stem cell-related protein L1TD1 is required for cell viability, neurosphere formation, and chemoresistance in medulloblastoma,” Stem Cells and Development, vol. 24, no. 22, pp. 2700–2708, 2015. View at Publisher · View at Google Scholar
  26. L. E. Santaliz-Ruiz IV, X. Xie, M. Old, T. N. Teknos, and Q. Pan, “Emerging role of nanog in tumorigenesis and cancer stem cells,” International Journal of Cancer, vol. 135, no. 12, pp. 2741–2748, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. Y.-C. Hsu and E. Fuchs, “A family business: stem cell progeny join the niche to regulate homeostasis,” Nature Reviews Molecular Cell Biology, vol. 13, no. 2, pp. 103–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Plaks, N. Kong, Z. Werb, and V. Plaks, “The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?” Cell Stem Cell, vol. 16, no. 3, pp. 225–238, 2015. View at Publisher · View at Google Scholar
  29. M. Hidalgo, “New insights into pancreatic cancer biology,” Annals of Oncology, vol. 23, supplement 10, pp. x135–x138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Hanahan and L. M. Coussens, “Accessories to the crime: functions of cells recruited to the tumor microenvironment,” Cancer Cell, vol. 21, no. 3, pp. 309–322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Korkaya, S. Liu, and M. S. Wicha, “Breast cancer stem cells, cytokine networks, and the tumor microenvironment,” The Journal of Clinical Investigation, vol. 121, no. 10, pp. 3804–3809, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. D. G. DeNardo, D. J. Brennan, E. Rexhepaj et al., “Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy,” Cancer Discovery, vol. 1, no. 1, pp. 54–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Lonardo, J. Frias-Aldeguer, P. C. Hermann, and C. Heeschen, “Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness,” Cell Cycle, vol. 11, no. 7, pp. 1282–1290, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. J. W. Pollard, “Trophic macrophages in development and disease,” Nature Reviews Immunology, vol. 9, no. 4, pp. 259–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Fessler, F. E. Dijkgraaf, F. De Sousa E Melo, and J. P. Medema, “Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame?” Cancer Letters, vol. 341, no. 1, pp. 97–104, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Lonardo, P. C. Hermann, M.-T. Mueller et al., “Nodal/activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy,” Cell Stem Cell, vol. 9, no. 5, pp. 433–446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Liu, C. Ginestier, S. J. Ou et al., “Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks,” Cancer Research, vol. 71, no. 2, pp. 614–624, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H.-J. Li, F. Reinhardt, H. R. Herschman, and R. A. Weinberg, “Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling,” Cancer Discovery, vol. 2, no. 9, pp. 840–855, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Malanchi, A. Santamaria-Martínez, E. Susanto et al., “Interactions between cancer stem cells and their niche govern metastatic colonization,” Nature, vol. 481, no. 7379, pp. 85–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Yu, Y. Jing, X. Kou et al., “Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma,” PLoS ONE, vol. 8, no. 9, Article ID e73312, 2013. View at Google Scholar · View at Scopus
  41. S. M. Cabarcas, L. A. Mathews, and W. L. Farrar, “The cancer stem cell niche—there goes the neighborhood?” International Journal of Cancer, vol. 129, no. 10, pp. 2315–2327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Noy and J. W. Pollard, “Tumor-associated macrophages: from mechanisms to therapy,” Immunity, vol. 41, no. 1, pp. 49–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Bingle, N. J. Brown, and C. E. Lewis, “The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies,” Journal of Pathology, vol. 196, no. 3, pp. 254–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. B.-Z. Qian and J. W. Pollard, “Macrophage diversity enhances tumor progression and metastasis,” Cell, vol. 141, no. 1, pp. 39–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. R. M. Steinman and J. Idoyaga, “Features of the dendritic cell lineage,” Immunological Reviews, vol. 234, no. 1, pp. 5–17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Heusinkveld and S. H. van der Burg, “Identification and manipulation of tumor associated macrophages in human cancers,” Journal of Translational Medicine, vol. 9, article 216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. J. Murray, J. E. Allen, S. K. Biswas et al., “Macrophage activation and polarization: nomenclature and experimental guidelines,” Immunity, vol. 41, no. 1, pp. 14–20, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. C. V. Jones and S. D. Ricardo, “Macrophages and CSF-1: implications for development and beyond,” Organogenesis, vol. 9, no. 4, pp. 249–260, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” Journal of Clinical Investigation, vol. 122, no. 3, pp. 787–795, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Gordon and F. O. Martinez, “Alternative activation of macrophages: mechanism and functions,” Immunity, vol. 32, no. 5, pp. 593–604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Bonavita, M. R. Galdiero, S. Jaillon et al., “Phagocytes as corrupted policemen in cancer-related inflammation,” Advances in Cancer Research, vol. 128, pp. 141–171, 2015. View at Google Scholar
  52. E. Bonavita, S. Gentile, M. Rubino et al., “PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer,” Cell, vol. 160, no. 4, pp. 700–714, 2015. View at Publisher · View at Google Scholar · View at Scopus
  53. S. K. Biswas and A. Mantovani, “Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm,” Nature Immunology, vol. 11, no. 10, pp. 889–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Heusinkveld, P. J. de Vos van Steenwijk, R. Goedemans et al., “M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells,” The Journal of Immunology, vol. 187, no. 3, pp. 1157–1165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Laoui, K. Movahedi, E. Van Overmeire et al., “Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions,” International Journal of Developmental Biology, vol. 55, no. 7–9, pp. 861–867, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, “Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression,” The Journal of Immunology, vol. 177, no. 10, pp. 7303–7311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Yan, X. Liu, H. Ma et al., “Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages,” Gut, vol. 64, no. 10, pp. 1593–1604, 2015. View at Publisher · View at Google Scholar
  61. V. Gocheva, H.-W. Wang, B. B. Gadea et al., “IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion,” Genes and Development, vol. 24, no. 3, pp. 241–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Nagakawa, T. Aoki, K. Kasuya, A. Tsuchida, and Y. Koyanagi, “Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer,” Pancreas, vol. 24, no. 2, pp. 169–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Wang, J. Zhang, S. Chen et al., “Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression,” Lung Cancer, vol. 74, no. 2, pp. 188–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Sousa, R. Brion, M. Lintunen et al., “Human breast cancer cells educate macrophages toward the M2 activation status,” Breast Cancer Research, vol. 17, no. 1, article 101, 2015. View at Publisher · View at Google Scholar
  65. L. R. Bohrer and K. L. Schwertfeger, “Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner,” Molecular Cancer Research, vol. 10, no. 10, pp. 1294–1305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Fang, L. Ye, L. Shen et al., “Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8,” Carcinogenesis, vol. 35, no. 8, pp. 1780–1787, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. X.-Z. Ye, S.-L. Xu, Y.-H. Xin et al., “Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway,” The Journal of Immunology, vol. 189, no. 1, pp. 444–453, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Singh, B. S. Shankar, and K. B. Sainis, “TGF-beta1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells,” Cellular Signalling, vol. 26, no. 7, pp. 1604–1615, 2014. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Li, X. Wang, J.-L. Wu et al., “Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro,” PLoS ONE, vol. 8, no. 2, Article ID e56616, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Sainz Jr., S. Alcala, E. Garcia et al., “Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment,” Gut, vol. 64, no. 12, pp. 1921–1935, 2015. View at Publisher · View at Google Scholar
  71. E. Y. Lin, J.-F. Li, L. Gnatovskiy et al., “Macrophages regulate the angiogenic switch in a mouse model of breast cancer,” Cancer Research, vol. 66, no. 23, pp. 11238–11246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Murdoch, M. Muthana, S. B. Coffelt, and C. E. Lewis, “The role of myeloid cells in the promotion of tumour angiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 618–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, “Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy,” European Journal of Cancer, vol. 42, no. 6, pp. 717–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. R. Galdiero, E. Bonavita, I. Barajon, C. Garlanda, A. Mantovani, and S. Jaillon, “Tumor associated macrophages and neutrophils in cancer,” Immunobiology, vol. 218, no. 11, pp. 1402–1410, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Raggi, H. S. Mousa, M. Correnti, A. Sica, and P. Invernizzi, “Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies,” Oncogene, 2015. View at Publisher · View at Google Scholar
  77. M. R. Alison, S. Islam, and N. A. Wright, “Stem cells in cancer: instigators and propagators?” Journal of Cell Science, vol. 123, part 14, pp. 2357–2368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Korkaya, S. Liu, and M. S. Wicha, “Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots,” Clinical Cancer Research, vol. 17, no. 19, pp. 6125–6129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. E. M. Moran, “Epidemiological and clinical aspects of nonsteroidal anti-inflammatory drugs and cancer risks,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 21, no. 2, pp. 193–201, 2002. View at Google Scholar · View at Scopus
  80. M. Karin and F. R. Greten, “NF-kappaB: linking inflammation and immunity to cancer development and progression,” Nature Reviews Immunology, vol. 5, no. 10, pp. 749–759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. F. R. Greten, L. Eckmann, T. F. Greten et al., “IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer,” Cell, vol. 118, no. 3, pp. 285–296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Bollrath, T. J. Phesse, V. A. von Burstin et al., “gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis,” Cancer Cell, vol. 15, no. 2, pp. 91–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Colotta, P. Allavena, A. Sica, C. Garlanda, and A. Mantovani, “Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability,” Carcinogenesis, vol. 30, no. 7, pp. 1073–1081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Kortylewski, H. Xin, M. Kujawski et al., “Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment,” Cancer Cell, vol. 15, no. 2, pp. 114–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. H. L. LaMarca, A. P. Visbal, C. J. Creighton et al., “CCAAT/enhancer binding protein beta regulates stem cell activity and specifies luminal cell fate in the mammary gland,” STEM CELLS, vol. 28, no. 3, pp. 535–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Maeda, H. Kamata, J.-L. Luo, H. Leffert, and M. Karin, “IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis,” Cell, vol. 121, no. 7, pp. 977–990, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Iliopoulos, H. A. Hirsch, and K. Struhl, “An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to celltransformation,” Cell, vol. 139, no. 4, pp. 693–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Y. Song, M. Gannon, M. K. Washington et al., “Expansion of Pdx1-expressing pancreatic epithelium and islet neogenesis in transgenic mice overexpressing transforming growth factor alpha,” Gastroenterology, vol. 117, no. 6, pp. 1416–1426, 1999. View at Google Scholar
  89. G.-Y. Liou, H. Döppler, B. Necela et al., “Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-κB and MMPs,” The Journal of Cell Biology, vol. 202, no. 3, pp. 563–577, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Guerra, A. J. Schuhmacher, M. Cañamero et al., “Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice,” Cancer Cell, vol. 11, no. 3, pp. 291–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. G.-Y. Liou, H. Döppler, B. Necela et al., “Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions,” Cancer Discovery, vol. 5, no. 1, pp. 52–63, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Miyamoto, K. Y. Araki, K. Naka et al., “Foxo3a is essential for maintenance of the hematopoietic stem cell pool,” Cell Stem Cell, vol. 1, no. 1, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Diehn, R. W. Cho, N. A. Lobo et al., “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” Nature, vol. 458, no. 7239, pp. 780–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. T. M. Phillips, W. H. McBride, and F. Pajonk, “The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation,” Journal of the National Cancer Institute, vol. 98, no. 24, pp. 1777–1785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. S. P. Gao, K. G. Mark, K. Leslie et al., “Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas,” Journal of Clinical Investigation, vol. 117, no. 12, pp. 3846–3856, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. D. J. J. Waugh and C. Wilson, “The interleukin-8 pathway in cancer,” Clinical Cancer Research, vol. 14, no. 21, pp. 6735–6741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Ginestier, S. Liu, M. E. Diebel et al., “CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts,” Journal of Clinical Investigation, vol. 120, no. 2, pp. 485–497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. P. J. Barnes and M. Karin, “Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases,” The New England Journal of Medicine, vol. 336, no. 15, pp. 1066–1071, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Wan, E. Zhao, I. Kryczek et al., “Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells,” Gastroenterology, vol. 147, no. 6, pp. 1393–1404, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. J. B. Mitchem, D. J. Brennan, B. L. Knolhoff et al., “Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses,” Cancer Research, vol. 73, no. 3, pp. 1128–1141, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Le Gouvello, S. Bastuji-Garin, N. Aloulou et al., “High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas,” Gut, vol. 57, no. 6, pp. 772–779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. Miyahara, K. Odunsi, W. Chen, G. Peng, J. Matsuzaki, and R.-F. Wang, “Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 40, pp. 15505–15510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. K. S. Sfanos, T. C. Bruno, C. H. Maris et al., “Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing,” Clinical Cancer Research, vol. 14, no. 11, pp. 3254–3261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. X. Zhu, L. A. Mulcahy, R. A. A. Mohammed et al., “IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines,” Breast Cancer Research, vol. 10, no. 6, article R95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Xiang, H. Long, L. He et al., “Interleukin-17 produced by tumor microenvironment promotes self-renewal of CD133+ cancer stem-like cells in ovarian cancer,” Oncogene, vol. 34, no. 2, pp. 165–176, 2015. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Ward, A. H. Sims, A. Lee et al., “Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment,” Oncotarget, vol. 6, no. 16, pp. 14687–14699, 2015. View at Publisher · View at Google Scholar
  108. S. Goswami, E. Sahai, J. B. Wyckoff et al., “Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop,” Cancer Research, vol. 65, no. 12, pp. 5278–5283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Yang, D. Liao, C. Chen et al., “Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway,” STEM CELLS, vol. 31, no. 2, pp. 248–258, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. O. Leis, A. Eguiara, E. Lopez-Arribillaga et al., “Sox2 expression in breast tumours and activation in breast cancer stem cells,” Oncogene, vol. 31, no. 11, pp. 1354–1365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Tiwari, V. K. Tiwari, L. Waldmeier et al., “Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming,” Cancer Cell, vol. 23, no. 6, pp. 768–783, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. C.-J. Chang, J.-Y. Yang, W. Xia et al., “EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling,” Cancer Cell, vol. 19, no. 1, pp. 86–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. H. Lu, K. R. Clauser, W. L. Tam et al., “A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages,” Nature Cell Biology, vol. 16, no. 11, pp. 1105–1117, 2014. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Jinushi, M. Sato, A. Kanamoto et al., “Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms,” The Journal of Experimental Medicine, vol. 206, no. 6, pp. 1317–1326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. W. Zhou, S. Q. Ke, Z. Huang et al., “Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth,” Nature Cell Biology, vol. 17, no. 2, pp. 170–182, 2015. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Sainz Jr., B. Martín, M. Tatari, C. Heeschen, and S. Guerra, “ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells,” Cancer Research, vol. 74, no. 24, pp. 7309–7320, 2014. View at Publisher · View at Google Scholar · View at Scopus
  117. M.-J. Brissette, S. Lepage, A.-S. Lamonde et al., “MFG-E8 released by apoptotic endothelial cells triggers anti-inflammatory macrophage reprogramming,” PLoS ONE, vol. 7, no. 4, Article ID e36368, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard, “Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy,” The Journal of Experimental Medicine, vol. 193, no. 6, pp. 727–740, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Rodrigues, F. O. Hering, and A. Meller, “Adjuvant effect of IV clodronate on the delay of bone metastasis in high-risk prostate cancer patients: a prospective study,” Cancer Research and Treatment, vol. 43, no. 4, pp. 231–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. W. Zhang, X.-D. Zhu, H.-C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. I. Baccelli, A. Schneeweiss, S. Riethdorf et al., “Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay,” Nature Biotechnology, vol. 31, no. 6, pp. 539–544, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. E. Zoni, G. van der Horst, A. F. van de Merbel et al., “miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of αv- and α6-integrin expression,” Cancer Research, vol. 75, no. 11, pp. 2326–2336, 2015. View at Publisher · View at Google Scholar
  123. C. L. Hodgkinson, C. J. Morrow, Y. Li et al., “Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer,” Nature Medicine, vol. 20, no. 8, pp. 897–903, 2014. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Cano, P. G. Santamaría, and G. Moreno-Bueno, “LOXL2 in epithelial cell plasticity and tumor progression,” Future Oncology, vol. 8, no. 9, pp. 1095–1108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. N. Takebe, R. Q. Warren, and S. P. Ivy, “Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition,” Breast Cancer Research, vol. 13, no. 3, p. 211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. Q.-M. Fan, Y.-Y. Jing, G.-F. Yu et al., “Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma,” Cancer Letters, vol. 352, no. 2, pp. 160–168, 2014. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Su, Q. Liu, J. Chen et al., “A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis,” Cancer Cell, vol. 25, no. 5, pp. 605–620, 2014. View at Publisher · View at Google Scholar · View at Scopus
  128. C.-H. Lee, S.-Y. Liu, K.-C. Chou et al., “Tumor-associated macrophages promote oral cancer progression through activation of the Axl signaling pathway,” Annals of Surgical Oncology, vol. 21, no. 3, pp. 1031–1037, 2014. View at Publisher · View at Google Scholar · View at Scopus
  129. C.-Y. Liu, J.-Y. Xu, X.-Y. Shi et al., “M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway,” Laboratory Investigation, vol. 93, no. 7, pp. 844–854, 2013. View at Publisher · View at Google Scholar · View at Scopus
  130. A.-K. Bonde, V. Tischler, S. Kumar, A. Soltermann, and R. A. Schwendener, “Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors,” BMC Cancer, vol. 12, article 35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  131. C.-Y. Lin, C.-J. Lin, K.-H. Chen, J.-C. Wu, S.-H. Huang, and S.-M. Wang, “Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction,” FEBS Letters, vol. 580, no. 13, pp. 3042–3050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. C. H. Zhang, F. L. Guo, G. L. Xu et al., “STAT3 activation mediates epithelial-to-mesenchymal transition in human hepatocellular carcinoma cells,” Hepatogastroenterology, vol. 61, no. 132, pp. 1082–1089, 2014. View at Google Scholar
  133. N. Zhou, Y. Zhang, X. Zhang et al., “Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis,” International Journal of Molecular Sciences, vol. 16, no. 6, pp. 11966–11982, 2015. View at Google Scholar
  134. M. Jinushi, S. Chiba, H. Yoshiyama et al., “Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12425–12430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. S. A. Mani, W. Guo, M.-J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. S. B. Krantz, M. A. Shields, S. Dangi-Garimella, H. G. Munshi, and D. J. Bentrem, “Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression,” Journal of Surgical Research, vol. 173, no. 1, pp. 105–112, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Dovas, A. Patsialou, A. S. Harney, J. Condeelis, and D. Cox, “Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro,” Journal of Microscopy, vol. 251, no. 3, pp. 261–269, 2013. View at Publisher · View at Google Scholar · View at Scopus
  138. A. E. Powell, E. C. Anderson, P. S. Davies et al., “Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming,” Cancer Research, vol. 71, no. 4, pp. 1497–1505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. T. Tsubouchi, J. Soza-Ried, K. Brown et al., “DNA synthesis is required for reprogramming mediated by stem cell fusion,” Cell, vol. 152, no. 4, pp. 873–883, 2013. View at Publisher · View at Google Scholar · View at Scopus
  140. H. M. Schramm, “Should EMT of cancer cells be understood as epithelial-myeloid transition?” Journal of Cancer, vol. 5, no. 2, pp. 125–132, 2014. View at Publisher · View at Google Scholar · View at Scopus
  141. J. M. Pawelek and A. K. Chakraborty, “Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis,” Nature Reviews Cancer, vol. 8, no. 5, pp. 377–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. J. M. Pawelek and A. K. Chakraborty, “The cancer cell—leukocyte fusion theory of metastasis,” in Advances in Cancer Research, vol. 101, chapter 10, pp. 397–444, Academic Press, New York, NY, USA, 2008. View at Publisher · View at Google Scholar
  143. G. A. Clawson, G. L. Matters, P. Xin et al., “Macrophage-tumor cell fusions from peripheral blood of melanoma patients,” PLoS ONE, vol. 10, no. 8, Article ID e0134320, 2015. View at Publisher · View at Google Scholar
  144. R. Lazova, G. S. LaBerge, E. Duvall et al., “A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer,” PLoS ONE, vol. 8, no. 6, Article ID e66731, 2013. View at Publisher · View at Google Scholar · View at Scopus
  145. D. L. Adams, S. S. Martin, R. K. Alpaugh et al., “Circulating giant macrophages as a potential biomarker of solid tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 9, pp. 3514–3519, 2014. View at Publisher · View at Google Scholar · View at Scopus
  146. K. J. Luzzi, I. C. MacDonald, E. E. Schmidt et al., “Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases,” The American Journal of Pathology, vol. 153, no. 3, pp. 865–873, 1998. View at Publisher · View at Google Scholar · View at Scopus
  147. C. W. Wong, A. Lee, L. Shientag et al., “Apoptosis: an early event in metastatic inefficiency,” Cancer Research, vol. 61, no. 1, pp. 333–338, 2001. View at Google Scholar · View at Scopus
  148. T. Oskarsson, E. Batlle, and J. Massagué, “Metastatic stem cells: sources, niches, and vital pathways,” Cell Stem Cell, vol. 14, no. 3, pp. 306–321, 2014. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Liu, Y. Cong, D. Wang et al., “Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts,” Stem Cell Reports, vol. 2, no. 1, pp. 78–91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Balic, H. Lin, L. Young et al., “Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype,” Clinical Cancer Research, vol. 12, no. 19, pp. 5615–5621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. V. Plaks, C. D. Koopman, and Z. Werb, “Circulating tumor cells,” Science, vol. 341, no. 6151, pp. 1186–1188, 2013. View at Publisher · View at Google Scholar · View at Scopus
  152. B. Qian, Y. Deng, J. H. Im et al., “A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth,” PLoS ONE, vol. 4, no. 8, Article ID e6562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. R. N. Kaplan, R. D. Riba, S. Zacharoulis et al., “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche,” Nature, vol. 438, no. 7069, pp. 820–827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. H. W. van Deventer, D. A. Palmieri, Q. P. Wu, E. C. McCook, and J. S. Serody, “Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2,” The Journal of Immunology, vol. 190, no. 9, pp. 4861–4867, 2013. View at Publisher · View at Google Scholar · View at Scopus
  155. A. M. Gil-Bernabé, Š. Ferjančič, M. Tlalka et al., “Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice,” Blood, vol. 119, no. 13, pp. 3164–3175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. B. Costa-Silva, N. M. Aiello, A. J. Ocean et al., “Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver,” Nature Cell Biology, vol. 17, no. 6, pp. 816–826, 2015. View at Publisher · View at Google Scholar
  157. T. Kitamura, B.-Z. Qian, and J. W. Pollard, “Immune cell promotion of metastasis,” Nature Reviews Immunology, vol. 15, no. 2, pp. 73–86, 2015. View at Publisher · View at Google Scholar · View at Scopus
  158. G. Germano, R. Frapolli, C. Belgiovine et al., “Role of macrophage targeting in the antitumor activity of trabectedin,” Cancer Cell, vol. 23, no. 2, pp. 249–262, 2013. View at Publisher · View at Google Scholar · View at Scopus
  159. C. H. Ries, M. A. Cannarile, S. Hoves et al., “Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy,” Cancer Cell, vol. 25, no. 6, pp. 846–859, 2014. View at Publisher · View at Google Scholar · View at Scopus
  160. F. Hussain, M. Freissmuth, D. Völkel et al., “Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo,” Molecular Cancer Therapeutics, vol. 12, no. 7, pp. 1223–1234, 2013. View at Publisher · View at Google Scholar · View at Scopus
  161. T. Yamashina, M. Baghdadi, A. Yoneda et al., “Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells,” Cancer Research, vol. 74, no. 10, pp. 2698–2709, 2014. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Cioffi, S. Trabulo, M. Hidalgo et al., “Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms,” Clinical Cancer Research, vol. 21, no. 10, pp. 2325–2337, 2015. View at Publisher · View at Google Scholar
  163. T. K.-W. Lee, V. C.-H. Cheung, P. Lu et al., “Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma,” Hepatology, vol. 60, no. 1, pp. 179–191, 2014. View at Publisher · View at Google Scholar · View at Scopus
  164. T. Matozaki, Y. Murata, H. Okazawa, and H. Ohnishi, “Functions and molecular mechanisms of the CD47-SIRPα signalling pathway,” Trends in Cell Biology, vol. 19, no. 2, pp. 72–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. K. S. Chan, I. Espinosa, M. Chao et al., “Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14016–14021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. R. Majeti, M. P. Chao, A. A. Alizadeh et al., “CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells,” Cell, vol. 138, no. 2, pp. 286–299, 2009. View at Publisher · View at Google Scholar · View at Scopus