Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2016 (2016), Article ID 9607946, 11 pages
http://dx.doi.org/10.1155/2016/9607946
Review Article

Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases

1National Institute of Geriatrics Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland
2Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK

Received 20 May 2016; Accepted 12 July 2016

Academic Editor: Nona Janikashvili

Copyright © 2016 Marzena Ciechomska and Steven O’Reilly. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Alarcon, G. V. Williams, J. Z. Singer et al., “Early undifferentiated connective tissue disease. I. Early clinical manifestation in a large cohort of patients with undifferentiated connective tissue diseases compared with cohorts of well established connective tissue disease,” The Journal of Rheumatology, vol. 18, no. 9, pp. 1332–1339, 1991. View at Google Scholar · View at Scopus
  2. G. Arango Duque and A. Descoteaux, “Macrophage cytokines: involvement in immunity and infectious diseases,” Frontiers in Immunology, vol. 5, article 491, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Lu and L. M. Wahl, “Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-κB activity in lipopolysaccharide-activated human primary monocytes,” Journal of Immunology, vol. 175, no. 8, pp. 5423–5429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Aggarwal, “Role of autoantibody testing,” Best Practice & Research Clinical Rheumatology, vol. 28, no. 6, pp. 907–920, 2014. View at Publisher · View at Google Scholar
  5. N. Qu, M. Xu, I. Mizoguchi et al., “Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases,” Clinical and Developmental Immunology, vol. 2013, Article ID 968549, 13 pages, 2013. View at Publisher · View at Google Scholar
  6. A. P. Feinberg, “Phenotypic plasticity and the epigenetics of human disease,” Nature, vol. 447, no. 7143, pp. 433–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Wahren-Herlenius and T. Dörner, “Immunopathogenic mechanisms of systemic autoimmune disease,” The Lancet, vol. 382, no. 9894, pp. 819–831, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Gervin, M. D. Vigeland, M. Mattingsdal et al., “DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes,” PLoS Genetics, vol. 8, no. 1, Article ID e1002454, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. B. D. Adams, C. Parsons, and F. J. Slack, “The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas,” Expert Opinion on Therapeutic Targets, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Lu and A. G. Clark, “Impact of microRNA regulation on variation in human gene expression,” Genome Research, vol. 22, no. 7, pp. 1243–1254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. X.-M. Hua, J. Wang, D.-M. Qian et al., “DNA methylation level of promoter region of activating transcription factor 5 in glioma,” Journal of Zhejiang University Science B, vol. 16, no. 9, pp. 757–762, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Weber, I. Hellmann, M. B. Stadler et al., “Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome,” Nature Genetics, vol. 39, no. 4, pp. 457–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. L. A. Janssen, H. W. Reesink, E. J. Lawitz et al., “Treatment of HCV infection by targeting microRNA,” The New England Journal of Medicine, vol. 368, no. 18, pp. 1685–1694, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. D. C. Dolinoy, “The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome,” Nutrition Reviews, vol. 66, supplement 1, pp. S7–S11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Raj and G. J. Mufti, “Azacytidine (Vidaza®) in the treatment of myelodysplastic syndromes,” Therapeutics and Clinical Risk Management, vol. 2, no. 4, pp. 377–388, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Wu, X. Du, J. Jin et al., “Decitabine for treatment of myelodysplastic syndromes in Chinese patients: an open-label, phase-3b study,” Advances in Therapy, vol. 32, no. 11, pp. 1140–1159, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Lübbert, S. Suciu, A. Hagemeijer et al., “Decitabine improves progression-free survival in older high-risk MDS patients with multiple autosomal monosomies: results of a subgroup analysis of the randomized phase III study 06011 of the EORTC Leukemia Cooperative Group and German MDS Study Group,” Annals of Hematology, vol. 95, no. 2, pp. 191–199, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhang, X. Zhang, E. Clark, M. Mulcahey, S. Huang, and Y. G. Shi, “TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine,” Cell Research, vol. 20, no. 12, pp. 1390–1393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. de Andres, E. Perez-Pampin, M. Calaza et al., “Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate,” Arthritis Research and Therapy, vol. 17, no. 1, article 233, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Rohle, J. Popovici-Muller, N. Palaskas et al., “An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells,” Science, vol. 340, no. 6132, pp. 626–630, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Chaturvedi, M. M. Araujo Cruz, N. Jyotsana et al., “Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML,” Blood, vol. 122, no. 16, pp. 2877–2887, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. E. L. Mersfelder and M. R. Parthun, “The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure,” Nucleic Acids Research, vol. 34, no. 9, pp. 2653–2662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,” Cell Research, vol. 21, no. 3, pp. 381–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. B. Wozniak, R. Villuendas, J. R. Bischoff et al., “Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma,” Haematologica, vol. 95, no. 4, pp. 613–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Horizon 2020 Framework Programme EULAR's position and recommendations,” http://www.eular.org/myUploadData/files/EU_Horizon_2020_EULAR_position_paper.pdf.
  26. F. Humby, M. Bombardieri, A. Manzo et al., “Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium,” PLoS Medicine, vol. 6, article e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Niimoto, T. Nakasa, M. Ishikawa et al., “MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients,” BMC Musculoskeletal Disorders, vol. 11, article 209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Müller, F. Döring, M. Klapper et al., “Interleukin-6 and Tumour Necrosis Factor-α differentially regulate lincRNA transcripts in cells of the innate immune system in vivo in human subjects with rheumatoid arthritis,” Cytokine, vol. 68, no. 1, pp. 65–68, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Song, D. Kim, J. Han, Y. Kim, M. Lee, and E.-J. Jin, “PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis,” Clinical and Experimental Medicine, vol. 15, no. 1, pp. 121–126, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. C.-C. Liu, T.-J. Fang, T.-T. Ou et al., “Global DNA methylation, DNMT1, and MBD2 in patients with rheumatoid arthritis,” Immunology Letters, vol. 135, no. 1-2, pp. 96–99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Karouzakis, Y. Rengel, A. Jüngel et al., “DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts,” Genes and Immunity, vol. 12, no. 8, pp. 643–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Ishida, T. Kobayashi, S. Ito et al., “Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis,” Journal of Periodontology, vol. 83, no. 7, pp. 917–925, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. J. R. Glossop, R. D. Emes, N. B. Nixon et al., “Genome-wide DNA methylation profiling in rheumatoid arthritis identifies disease-associated methylation changes that are distinct to individual T- and B-lymphocyte populations,” Epigenetics, vol. 9, no. 9, pp. 1228–1237, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Altorok, P. Coit, T. Hughes et al., “Genome-wide DNA methylation patterns in naive CD4+ t cells from patients with primary Sjögren's syndrome,” Arthritis and Rheumatology, vol. 66, no. 3, pp. 731–739, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. S. O'Reilly, R. Cant, M. Ciechomska, and J. M. van Laar, “Interleukin-6: a new therapeutic target in systemic sclerosis?” Clinical & Translational Immunology, vol. 2, no. 4, p. e4, 2013. View at Publisher · View at Google Scholar
  36. L.-H. Fu, C.-L. Ma, B. Cong, S.-J. Li, H.-Y. Chen, and J.-G. Zhang, “Hypomethylation of proximal CpG motif of interleukin-10 promoter regulates its expression in human rheumatoid arthritis,” Acta Pharmacologica Sinica, vol. 32, no. 11, pp. 1373–1380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. L. C. Huber, M. Brock, H. Hemmatazad et al., “Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1087–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. T. T. Wada, Y. Araki, K. Sato et al., “Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts,” Biochemical and Biophysical Research Communications, vol. 444, no. 4, pp. 682–686, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. M. R. York, T. Nagai, A. J. Mangini, R. Lemaire, J. M. Van Seventer, and R. Lafyatis, “A macrophage marker, siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists,” Arthritis and Rheumatism, vol. 56, no. 3, pp. 1010–1020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Alsaleh, A. François, L. Philippe et al., “MiR-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis fibroblasts,” PLoS ONE, vol. 9, no. 10, Article ID e111266, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Wang, Y. Shu, Y. Xiao et al., “Hypomethylation and overexpression of ITGAL (CD11a) in CD4+ T cells in systemic sclerosis,” Clinical Epigenetics, vol. 6, no. 1, article 25, 2014. View at Publisher · View at Google Scholar
  42. M. Ciechomska, C. A. Huigens, T. Hügle et al., “Toll-like receptor-mediated, enhanced production of profibrotic TIMP-1 in monocytes from patients with systemic sclerosis: role of serum factors,” Annals of the Rheumatic Diseases, vol. 72, no. 8, pp. 1382–1389, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. S. O'Reilly, R. Cant, M. Ciechomska et al., “Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB,” Immunology, vol. 143, no. 3, pp. 331–340, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Ciechomska, S. O'Reilly, S. Przyborski, F. Oakley, K. Bogunia-Kubik, and J. M. van Laar, “Histone demethylation and toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via fra-2,” Arthritis & Rheumatology, vol. 68, no. 6, pp. 1493–1504, 2016. View at Google Scholar
  45. Y. Wang, Y. Yang, Y. Luo et al., “Aberrant histone modification in peripheral blood B cells from patients with systemic sclerosis,” Clinical Immunology, vol. 149, no. 1, pp. 46–54, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. M. N. Primo, R. O. Bak, B. Schibler, and J. G. Mikkelsen, “Regulation of pro-inflammatory cytokines TNFα and IL24 by microRNA-203 in primary keratinocytes,” Cytokine, vol. 60, no. 3, pp. 741–748, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Xia, X. Fang, Z.-H. Zhang et al., “Dysregulation of miRNA146a versus IRAK1 induces IL-17 persistence in the psoriatic skin lesions,” Immunology Letters, vol. 148, no. 2, pp. 151–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Gu, E. Nylander, P. J. Coates, R. Fahraeus, and K. Nylander, “Correlation between reversal of DNA methylation and clinical symptoms in psoriatic epidermis following narrow-band UVB phototherapy,” Journal of Investigative Dermatology, vol. 135, no. 8, pp. 2077–2083, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Chen, Z.-Q. Chen, P.-G. Cui et al., “The methylation pattern of p16INK4a gene promoter in psoriatic epidermis and its clinical significance,” British Journal of Dermatology, vol. 158, no. 5, pp. 987–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. L. E. Tovar-Castillo, J. C. Cancino-Díaz, F. García-Vázquez et al., “Under-expression of VHL and over-expression of HDAC-1, HIF-1α, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis,” International Journal of Dermatology, vol. 46, no. 3, pp. 239–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Zhang, Y. Su, M. Zhao, W. Huang, and Q. Lu, “Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris,” European Journal of Dermatology, vol. 21, no. 4, pp. 552–557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Quddus, K. J. Johnson, J. Gavalchin et al., “Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice,” Journal of Clinical Investigation, vol. 92, no. 1, pp. 38–53, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Deng, M. J. Kaplan, J. Yang et al., “Decreased ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients,” Arthritis and Rheumatism, vol. 44, no. 2, pp. 397–407, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Li, M. Zhao, H. Yin et al., “Overexpression of the growth arrest and DNA damage-induced 45α gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells,” Arthritis and Rheumatism, vol. 62, no. 5, pp. 1438–1447, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Li, G. Gorelik, F. M. Strickland, and B. C. Richardson, “Oxidative stress, T cell dna methylation, and lupus,” Arthritis and Rheumatology, vol. 66, no. 6, pp. 1574–1582, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. F. M. Strickland, Y. Li, K. Johnson, Z. Sun, and B. C. Richardson, “CD4+ T cells epigenetically modified by oxidative stress cause lupus-like autoimmunity in mice,” Journal of Autoimmunity, vol. 62, pp. 75–80, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. Q. Lu, M. Kaplan, D. Ray et al., “Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 46, no. 5, pp. 1282–1291, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. Lu, A. Wu, L. Tesmer, D. Ray, N. Yousif, and B. Richardson, “Demethylation of CD40LG on the inactive X in T cells from women with lupus,” The Journal of Immunology, vol. 179, no. 9, pp. 6352–6358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Coit, M. Jeffries, N. Altorok et al., “Genome-wide DNA methylation study suggests epigenetic accessibility andtranscriptional poising of interferon-regulated genes in naïve CD4+ T cellsfrom lupus patients,” Journal of Autoimmunity, vol. 43, pp. 78–84, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. D. M. Absher, X. Li, L. L. Waite et al., “Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations,” PLoS Genetics, vol. 9, no. 8, article e1003678, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. S. A. Chung, J. Nititham, E. Elboudwarej et al., “Genome-wide assessment of differential DNA methylation associated with autoantibody production in systemic lupus erythematosus,” PLoS ONE, vol. 10, no. 7, Article ID e0129813, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Fali, C. Le Dantec, Y. Thabet et al., “DNA methylation modulates HRES1/p28 expression in B cells from patients with lupus,” Autoimmunity, vol. 47, no. 4, pp. 265–271, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Qin, X. Zhu, J. Liang et al., “MicroRNA-29b contributes to DNA hypomethylation of CD4+ T cells in systemic lupus erythematosus by indirectly targeting DNA methyltransferase 1,” Journal of Dermatological Science, vol. 69, no. 1, pp. 61–67, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Tang, X. Luo, H. Cui et al., “MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins,” Arthritis and Rheumatism, vol. 60, no. 4, pp. 1065–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Hong, J. Wu, J. Zhao et al., “miR-29b and miR-29c are involved in toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells,” PLoS ONE, vol. 8, no. 7, article e69926, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Pan, S. Zhu, M. Yuan et al., “MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1,” The Journal of Immunology, vol. 184, no. 12, pp. 6773–6781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Deng, J. Zhao, D. Sakurai et al., “MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus,” PLoS Genetics, vol. 9, no. 2, Article ID e1003336, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Fan, D. Liang, Y. Tang et al., “Identification of microRNA-31 as a novel regulator contributing to impaired interleukin-2 production in T cells from patients with systemic lupus erythematosus,” Arthritis & Rheumatism, vol. 64, no. 11, pp. 3715–3725, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Wang, L.-S. Tam, B. C.-H. Kwan et al., “Expression of miR-146a and miR-155 in the urinary sediment of systemic lupus erythematosus,” Clinical Rheumatology, vol. 31, no. 3, pp. 435–440, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Hu, X. Qiu, Y. Luo et al., “Abnormal histone modification patterns in lupus CD4+ T cells,” The Journal of Rheumatology, vol. 35, no. 5, pp. 804–810, 2008. View at Google Scholar · View at Scopus
  71. M. Mandal, S. E. Powers, M. Maienschein-Cline et al., “Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2,” Nature Immunology, vol. 12, no. 12, pp. 1212–1220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Long, W. Huang, H. Yin, S. Zhao, M. Zhao, and Q. Lu, “Abnormal expression pattern of histone demethylases in CD4 + T cells of MRL/lpr lupus-like mice,” Lupus, vol. 18, no. 14, pp. 1327–1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. Q. Zhang, H. long, J. Liao et al., “Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus,” Journal of Autoimmunity, vol. 37, no. 3, pp. 180–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Mishra, C. M. Reilly, D. R. Brown, P. Ruiz, and G. S. Gilkeson, “Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse,” Journal of Clinical Investigation, vol. 111, no. 4, pp. 539–552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Zhou, X. Qiu, Y. Luo et al., “Histone modifications and methyl-CpG-binding domain protein levels at the TNFSF7 (CD70) promoter in SLE CD4+ T cells,” Lupus, vol. 20, no. 13, pp. 1365–1371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. K. M. Pauley, C. M. Stewart, A. E. Gauna et al., “Altered miR-146a expression in Sjögren's syndrome and its functional role in innate immunity,” European Journal of Immunology, vol. 41, no. 7, pp. 2029–2039, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Shi, L.-Y. Zheng, P. Zhang, and C.-Q. Yu, “miR-146a and miR-155 expression in PBMCs from patients with Sjögren's syndrome,” Journal of Oral Pathology and Medicine, vol. 43, no. 10, pp. 792–797, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Zilahi, T. Tarr, G. Papp, Z. Griger, S. Sipka, and M. Zeher, “Increased microRNA-146a/b, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjögren's syndrome,” Immunology Letters, vol. 141, no. 2, pp. 165–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Tandon, A. Gallo, S.-I. Jang, G. G. Illei, and I. Alevizos, “Deep sequencing of short RNAs reveals novel microRNAs in minor salivary glands of patients with Sjögren's syndrome,” Oral Diseases, vol. 18, no. 2, pp. 127–131, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Liang, K. Xiong, K. E. Szulwach et al., “Sjögren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition,” Journal of Biological Chemistry, vol. 288, no. 1, pp. 723–736, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Thabet, C. Le Dantec, I. Ghedira et al., “Epigenetic dysregulation in salivary glands from patients with primary Sjögren's syndrome may be ascribed to infiltrating B cells,” Journal of Autoimmunity, vol. 41, pp. 175–181, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. X. Yu, G. Liang, H. Yin et al., “DNA hypermethylation leads to lower FOXP3 expression in CD4+ T cells of patients with primary Sjögren's syndrome,” Clinical Immunology, vol. 148, no. 2, pp. 254–257, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. N. Altorok, P. Coit, T. Hughes et al., “Genome-wide DNA methylation patterns in naive cd4+ t cells from patients with primary sjögren's syndrome,” Arthritis and Rheumatology, vol. 66, no. 3, pp. 731–739, 2014. View at Publisher · View at Google Scholar · View at Scopus
  84. N.-S. Lai, H.-C. Yu, H.-C. Chen, C.-L. Yu, H.-B. Huang, and M.-C. Lu, “Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis,” Clinical & Experimental Immunology, vol. 173, no. 1, pp. 47–57, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Qi, S. Hou, Q. Zhang et al., “A functional variant of pre-miRNA-196a2 confers risk for Behcet's disease but not for Vogt-Koyanagi-Harada syndrome or AAU in ankylosing spondylitis,” Human Genetics, vol. 132, no. 12, pp. 1395–1404, 2013. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Xia, K. Chen, M.-H. Zhang et al., “MicroRNA-124 involves in ankylosing spondylitis by targeting ANTXR2,” Modern Rheumatology, vol. 25, no. 5, pp. 784–789, 2015. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Niu, J. Wang, H. Zou, C. Yang, W. Huang, and L. Jin, “Common MIR146A polymorphisms in Chinese ankylosing spondylitis subjects and controls,” PLoS ONE, vol. 10, no. 9, Article ID e0137770, 2015. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Appel, P. Wu, R. Scheer et al., “Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis,” The Journal of Rheumatology, vol. 38, no. 11, pp. 2445–2451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. N.-S. Lai, J.-L. Chou, G. C. W. Chen, S.-Q. Liu, M.-C. Lu, and M. W. Y. Chan, “Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis,” Molecular Biology Reports, vol. 41, no. 6, pp. 3773–3780, 2014. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Toussirot, W. Abbas, K. A. Khan et al., “Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production,” PLoS ONE, vol. 8, no. 8, Article ID e70939, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. É. Toussirot, D. Wendling, and G. Herbein, “Biological treatments given in patients with rheumatoid arthritis or ankylosing spondylitis modify HAT/HDAC (histone acetyltransferase/histone deacetylase) balance,” Joint Bone Spine, vol. 81, no. 6, pp. 544–545, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. A. R. Roberts, M. Vecellio, L. Chen et al., “An ankylosing spondylitis-associated genetic variant in the IL23R-IL12RB2 intergenic region modulates enhancer activity and is associated with increased Th1-cell differentiation,” Annals of the Rheumatic Diseases, 2016. View at Publisher · View at Google Scholar
  93. P. Coit, L. B. De Lott, B. Nan, V. M. Elner, and A. H. Sawalha, “DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis,” Annals of the Rheumatic Diseases, vol. 75, no. 6, pp. 1196–1202, 2016. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Croci, A. Zerbini, L. Boiardi et al., “MicroRNA markers of inflammation and remodelling in temporal arteries from patients with giant cell arteritis,” Annals of the Rheumatic Diseases, vol. 75, no. 8, pp. 1527–1533, 2016. View at Publisher · View at Google Scholar · View at Scopus