Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017 (2017), Article ID 2309034, 11 pages
https://doi.org/10.1155/2017/2309034
Review Article

Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells?

1Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
2IRCCS Multimedica, 20099 Sesto San Giovanni, Italy
3Insititut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló 149-153, 08036 Barcelona, Spain
4CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
5Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy

Correspondence should be addressed to Angelica Giuliani

Received 29 September 2017; Accepted 20 November 2017; Published 27 December 2017

Academic Editor: Michal A. Rahat

Copyright © 2017 Angelica Giuliani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Franceschi and J. Campisi, “Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases,” The Journals of Gerontology Series A, vol. 69, Supplement 1, pp. S4–S9, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Franceschi, P. Garagnani, G. Vitale, M. Capri, and S. Salvioli, “Inflammaging and ‘Garb-aging’,” Trends in Endocrinology & Metabolism, vol. 28, no. 3, pp. 199–212, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Franceschi, M. Bonafè, S. Valensin et al., “Inflamm-aging: an evolutionary perspective on immunosenescence,” Annals of the New York Academy of Sciences, vol. 908, pp. 244–254, 2000. View at Publisher · View at Google Scholar
  4. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of Gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Publisher · View at Google Scholar
  5. M. De la Fuente and J. Miquel, “An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging,” Current Pharmaceutical Design, vol. 15, no. 26, pp. 3003–3026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Serra, T. Grune, N. Sitte, G. Saretzki, and T. von Zglinicki, “Telomere length as a marker of oxidative stress in primary human fibroblast cultures,” Annals of the New York Academy of Sciences, vol. 908, pp. 327–330, 2000. View at Publisher · View at Google Scholar
  7. M. L. Hegde, P. M. Hegde, D. Arijit, I. Boldogh, and S. Mitra, “Human DNA glycosylase NEIL1’s interactions with downstream repair proteins is critical for efficient repair of oxidized DNA Base damage and enhanced cell survival,” Biomolecules, vol. 2, no. 4, pp. 564–578, 2012. View at Publisher · View at Google Scholar
  8. J. F. Passos, G. Nelson, C. Wang et al., “Feedback between p21 and reactive oxygen production is necessary for cell senescence,” Molecular Systems Biology, vol. 6, p. 347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. V. I. Pérez, A. Bokov, H. Van Remmen et al., “Is the oxidative stress theory of aging dead?” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1790, no. 10, pp. 1005–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. D. Sesso, W. G. Christen, V. Bubes et al., “Multivitamins in the prevention of cardiovascular disease in men: the physicians’ health study II randomized controlled trial,” JAMA, vol. 308, no. 17, pp. 1751–1760, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Rautiainen, I. M. Lee, P. M. Rist et al., “Multivitamin use and cardiovascular disease in a prospective study of women,” The American Journal of Clinical Nutrition, vol. 101, no. 1, pp. 144–152, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Bjelakovic, D. Nikolova, and C. Gluud, “Antioxidant supplements and mortality,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 17, no. 1, pp. 40–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. H. Youm, R. W. Grant, L. R. McCabe et al., “Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging,” Cell Metabolism, vol. 18, no. 4, pp. 519–532, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Jurk, C. Wilson, J. F. Passos et al., “Chronic inflammation induces telomere dysfunction and accelerates ageing in mice,” Nature Communications, vol. 2, p. 4172, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Vasudevan, Y. Tong, and J. A. Steitz, “Switching from repression to activation: microRNAs can up-regulate translation,” Science, vol. 318, no. 5858, pp. 1931–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Breving and A. Esquela-Kerscher, “The complexities of microRNA regulation: mirandering around the rules,” The International Journal of Biochemistry & Cell Biology, vol. 42, no. 8, pp. 1316–1329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Olivieri, M. R. Rippo, V. Monsurrò et al., “MicroRNAs linking inflamm-aging, cellular senescence and cancer,” Ageing Research Reviews, vol. 12, no. 4, pp. 1056–1068, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Olivieri, L. Spazzafumo, M. Bonafè et al., “MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: relationship with type 2 diabetes complications,” Oncotarget, vol. 6, no. 34, pp. 35372–35382, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Prattichizzo, A. Giuliani, V. De Nigris et al., “Extracellular microRNAs and endothelial hyperglycaemic memory: a therapeutic opportunity?” Diabetes, Obesity and Metabolism, vol. 18, no. 9, pp. 855–867, 2016. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Bandiera, S. Hanein, S. Lyonnet, and A. Henrion-Caude, “Mitochondria as novel players of the cellular RNA interference,” The Journal of Biological Chemistry, vol. 286, no. 38, article le19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Shinde and U. Bhadra, “A complex genome-microRNA interplay in human mitochondria,” BioMed Research International, vol. 2015, Article ID 206382, 13 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Baker, T. Wijshake, T. Tchkonia et al., “Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders,” Nature, vol. 479, no. 7372, pp. 232–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Beauséjour, A. Krtolica, F. Galimi et al., “Reversal of human cellular senescence: roles of the p53 and p16 pathways,” The EMBO Journal, vol. 22, no. 16, pp. 4212–4222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. B. G. Childs, M. Durik, D. J. Baker, and J. M. van Deursen, “Cellular senescence in aging and age-related disease: from mechanisms to therapy,” Nature Medicine, vol. 21, no. 12, pp. 1424–1435, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Hewitt, D. Jurk, F. D. Marques et al., “Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence,” Nature Communications, vol. 3, p. 708, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Fumagalli, F. Rossiello, M. Clerici et al., “Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation,” Nature Cell Biology, vol. 14, no. 4, pp. 355–365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Prattichizzo, V. De Nigris, L. La Sala, A. D. Procopio, F. Olivieri, and A. Ceriello, ““Inflammaging” as a druggable target: a senescence-associated secretory phenotype—centered view of type 2 diabetes,” Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 1810327, 10 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. A. K. Palmer, T. Tchkonia, N. K. LeBrasseur, E. N. Chini, M. Xu, and J. L. Kirkland, “Cellular senescence in type 2 diabetes: a therapeutic opportunity,” Diabetes, vol. 64, no. 7, pp. 2289–2298, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhu, J. L. Armstrong, T. Tchkonia, and J. L. Kirkland, “Cellular senescence and the senescent secretory phenotype in age-related chronic diseases,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 17, no. 4, pp. 324–328, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. B. G. Childs, D. J. Baker, T. Wijshake, C. A. Conover, J. Campisi, and J. M. van Deursen, “Senescent intimal foam cells are deleterious at all stages of atherosclerosis,” Science, vol. 354, no. 6311, pp. 472–477, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Campisi, “Aging, cellular senescence, and cancer,” Annual Review of Physiology, vol. 75, no. 1, pp. 685–705, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. O. H. Jeon, C. Kim, R. M. Laberge et al., “Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment,” Nature Medicine, vol. 23, no. 6, pp. 775–781, 2017. View at Publisher · View at Google Scholar
  33. J. N. Farr, M. Xu, M. M. Weivoda et al., “Targeting cellular senescence prevents age-related bone loss in mice,” Nature Medicine, vol. 23, no. 9, pp. 1072–1079, 2017. View at Publisher · View at Google Scholar
  34. M. Xu, T. Tchkonia, H. Ding et al., “JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 46, pp. E6301–E6310, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. A. V. Orjalo, D. Bhaumik, B. K. Gengler, G. K. Scott, and J. Campisi, “Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 40, pp. 17031–17036, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. D. Wiley, M. C. Velarde, P. Lecot et al., “Mitochondrial dysfunction induces senescence with a distinct secretory phenotype,” Cell Metabolism, vol. 23, no. 2, pp. 303–314, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Correia-Melo, F. D. Marques, R. Anderson et al., “Mitochondria are required for pro-ageing features of the senescent phenotype,” The EMBO Journal, vol. 35, no. 7, pp. 724–742, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. C. D. Wiley and J. Campisi, “From ancient pathways to aging cells-connecting metabolism and cellular senescence,” Cell Metabolism, vol. 23, no. 6, pp. 1013–1021, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Zwerschke, S. Mazurek, P. Stöckl, E. Hütter, E. Eigenbrodt, and P. Jansen-Dürr, “Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence,” The Biochemical Journal, vol. 376, no. 2, pp. 403–411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. D. G. Hardie, D. Carling, and M. Carlson, “The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?” Annual Review of Biochemistry, vol. 67, no. 1, pp. 821–855, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. R. G. Jones, D. R. Plas, S. Kubek et al., “AMP-activated protein kinase induces a p53-dependent metabolic checkpoint,” Molecular Cell, vol. 18, no. 3, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Puzio-Kuter, “The role of p53 in metabolic regulation,” Genes & Cancer, vol. 2, no. 4, pp. 385–391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. R. M. Laberge, Y. Sun, A. V. Orjalo et al., “MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation,” Nature Cell Biology, vol. 17, no. 8, pp. 1049–1061, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. X. D. Zhang, Z. H. Qin, and J. Wang, “The role of p53 in cell metabolism,” Acta Pharmacologica Sinica, vol. 31, no. 9, pp. 1208–1212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Mauro, S. C. Leow, E. Anso et al., “NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration,” Nature Cell Biology, vol. 13, no. 10, pp. 1272–1279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Leary, “Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad,” Antioxidants & Redox Signaling, vol. 13, no. 9, pp. 1403–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Matoba, J. G. Kang, W. D. Patino et al., “p53 regulates mitochondrial respiration,” Science, vol. 312, no. 5780, pp. 1650–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Tornatore, A. K. Thotakura, J. Bennett, M. Moretti, and G. Franzoso, “The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation,” Trends in Cell Biology, vol. 22, no. 11, pp. 557–566, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. R. A. Reid, J. Moyle, and P. Mitchell, “Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria,” Nature, vol. 212, pp. 257-258, 1966. View at Publisher · View at Google Scholar · View at Scopus
  50. I. Bratic and A. Trifunovic, “Mitochondrial energy metabolism and ageing,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1797, no. 6-7, pp. 961–967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Liu, G. Fiskum, and D. Schubert, “Generation of reactive oxygen species by the mitochondrial electron transport chain,” Journal of Neurochemistry, vol. 80, no. 5, pp. 780–787, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Zhang, D. Ryu, Y. Wu et al., “NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice,” Science, vol. 352, no. 6292, pp. 1436–1443, 2016. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Fang, X. Wei, and Y. Wei, “Mitochondrial DNA in the regulation of innate immune responses,” Protein & Cell, vol. 7, no. 1, pp. 11–16, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria in NLRP3 inflammasome activation,” Nature, vol. 469, no. 7329, pp. 221–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Nakahira, J. A. Haspel, V. A. Rathinam et al., “Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome,” Nature Immunology, vol. 12, no. 3, pp. 222–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. J. C. Acosta, A. Banito, T. Wuestefeld et al., “A complex secretory program orchestrated by the inflammasome controls paracrine senescence,” Nature Cell Biology, vol. 15, no. 8, pp. 978–990, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Lane, B. Flam, R. Lockey, and N. Kolliputi, “TXNIP shuttling: missing link between oxidative stress and inflammasome activation,” Frontiers in Physiology, vol. 4, p. 50, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Nelson, O. Kucheryavenko, J. Wordsworth, and T. von Zglinicki, “The senescent bystander effect is caused by ROS-activated NF-κB signalling,” Mechanisms of Ageing and Development, 2017, In press. View at Publisher · View at Google Scholar
  59. M. S. Lamphier, C. M. Sirois, A. Verma, D. T. Golenbock, and E. Latz, “TLR9 and the recognition of self and non-self nucleic acids,” Annals of the New York Academy of Sciences, vol. 1082, no. 1, pp. 31–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Z. Zhang, Z. Liu, J. Liu, J. X. Ren, and T. S. Sun, “Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue,” International Journal of Molecular Medicine, vol. 33, no. 4, pp. 817–824, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Yuan, Y. Mao, W. Luo et al., “Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling mechanism,” The Journal of Biological Chemistry, vol. 292, no. 36, pp. 15002–15015, 2017. View at Publisher · View at Google Scholar
  62. S. Glück, B. Guey, M. F. Gulen et al., “Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence,” Nature Cell Biology, vol. 19, no. 9, pp. 1061–1070, 2017. View at Publisher · View at Google Scholar
  63. M. R. de Galarreta and A. Lujambio, “DNA sensing in senescence,” Nature Cell Biology, vol. 19, no. 9, pp. 1008-1009, 2017. View at Publisher · View at Google Scholar
  64. H. Yang, H. Wang, J. Ren, Q. Chen, and Z. J. Chen, “cGAS is essential for cellular senescence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 23, pp. E4612–E4620, 2017. View at Publisher · View at Google Scholar
  65. N. Y. Lam, T. H. Rainer, R. W. Chiu, G. M. Joynt, and Y. M. Lo, “Plasma mitochondrial DNA concentrations after trauma,” Clinical Chemistry, vol. 50, no. 1, pp. 213–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. D. M. Stocco, J. Cascarano, and M. A. Wilson, “Quantitation of mitochondrial DNA, RNA, and protein in starved and starved-refed rat liver,” Journal of Cellular Physiology, vol. 90, no. 2, pp. 295–306, 1977. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Trifunovic, “Mitochondrial DNA and ageing,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1757, no. 5-6, pp. 611–617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. L. C. Greaves, M. Nooteboom, J. L. Elson et al., “Clonal expansion of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction during human ageing,” PLoS Genetics, vol. 10, no. 9, article e1004620, 2014. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. G. Yao, F. M. Ellison, J. P. McCoy, J. Chen, and N. S. Young, “Age-dependent accumulation of mtDNA mutations in murine hematopoietic stem cells is modulated by the nuclear genetic background,” Human Molecular Genetics, vol. 16, no. 3, pp. 286–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. G. De Benedictis, G. Rose, G. Carrieri et al., “Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans,” The FASEB Journal, vol. 13, no. 12, pp. 1532–1536, 1999. View at Google Scholar
  71. S. Salvioli, M. Capri, S. Valensin et al., “Inflamm-aging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology,” Current Pharmaceutical Design, vol. 12, no. 24, pp. 3161–3171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Salvioli, M. Capri, A. Santoro et al., “The impact of mitochondrial DNA on human lifespan: a view from studies on centenarians,” Biotechnology Journal, vol. 3, no. 6, pp. 740–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Khrapko and J. Vijg, “Mitochondrial DNA mutations and aging: devils in the details?” Trends in Genetics, vol. 25, no. 2, pp. 91–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. X. Zhang, X. Zuo, B. Yang et al., “MicroRNA directly enhances mitochondrial translation during muscle differentiation,” Cell, vol. 158, no. 3, pp. 607–619, 2014. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Geiger and L. T. Dalgaard, “Interplay of mitochondrial metabolism and microRNAs,” Cellular and Molecular Life Sciences, vol. 74, no. 4, pp. 631–646, 2017. View at Publisher · View at Google Scholar · View at Scopus
  76. B. T. Kren, P. Y. Wong, A. Sarver, X. Zhang, Y. Zeng, and C. J. Steer, “MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis,” RNA Biology, vol. 6, no. 1, pp. 65–72, 2009. View at Publisher · View at Google Scholar
  77. Z. Bian, L. M. Li, R. Tang et al., “Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions,” Cell Research, vol. 20, no. 9, pp. 1076–1078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Barrey, G. Saint-Auret, B. Bonnamy, D. Damas, O. Boyer, and X. Gidrol, “Pre-microRNA and mature microRNA in human mitochondria,” PLoS One, vol. 6, no. 5, article e20220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Bandiera, S. Rüberg, M. Girard et al., “Nuclear outsourcing of RNA interference components to human mitochondria,” PLoS One, vol. 6, no. 6, article e20746, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Sripada, D. Tomar, P. Prajapati, R. Singh, A. K. Singh, and R. Singh, “Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA,” PLoS One, vol. 7, no. 9, article e44873, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. T. R. Mercer, S. Neph, M. E. Dinger et al., “The human mitochondrial transcriptome,” Cell, vol. 146, no. 4, pp. 645–658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Dasgupta, Y. Peng, Z. Tan, G. Ciraolo, D. Wang, and R. Li, “miRNAs in mtDNA-less cell mitochondria,” Cell Death Discovery, vol. 1, article 15004, 2015. View at Publisher · View at Google Scholar
  83. R. Jagannathan, D. Thapa, C. E. Nichols et al., “Translational regulation of the mitochondrial genome following redistribution of mitochondrial microRNA in the diabetic heart,” Circulation: Cardiovascular Genetics, vol. 8, no. 6, pp. 785–802, 2015. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Das, M. Ferlito, O. A. Kent et al., “Nuclear miRNA regulates the mitochondrial genome in the heart,” Circulation Research, vol. 110, no. 12, pp. 1596–1603, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Das, D. Bedja, N. Campbell et al., “miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo,” PLoS One, vol. 9, no. 5, article e96820, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Nouws and G. S. Shadel, “Micromanaging mitochondrial translation,” Cell, vol. 158, no. 3, pp. 477-478, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. K. R. Mitchelson and W. Y. Qin, “Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease,” World Journal of Biological Chemistry, vol. 6, no. 3, pp. 162–208, 2015. View at Publisher · View at Google Scholar
  88. S. Lin, W. Luo, Y. Ye et al., “Let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chicken,” Frontiers in Physiology, vol. 8, p. 477, 2017. View at Publisher · View at Google Scholar
  89. A. Wredenberg, C. Freyer, M. E. Sandström et al., “Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance,” Biochemical and Biophysical Research Communications, vol. 350, no. 1, pp. 202–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Denham and P. R. Prestes, “Muscle-enriched microRNAs isolated from whole blood are regulated by exercise and are potential biomarkers of cardiorespiratory fitness,” Frontiers in Genetics, vol. 7, p. 196, 2016. View at Publisher · View at Google Scholar · View at Scopus
  91. M. M. Robinson, S. Dasari, A. R. Konopka et al., “Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans,” Cell Metabolism, vol. 25, no. 3, pp. 581–592, 2017. View at Publisher · View at Google Scholar
  92. M. Carrer, N. Liu, C. E. Grueter et al., “Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 38, pp. 15330–15335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Prattichizzo, A. Giuliani, R. Recchioni et al., “Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells,” Oncotarget, vol. 7, no. 11, pp. 11945–11958, 2016. View at Publisher · View at Google Scholar · View at Scopus
  94. M. R. Rippo, F. Olivieri, V. Monsurrò, F. Prattichizzo, M. C. Albertini, and A. D. Procopio, “MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a,” Experimental Gerontology, vol. 56, pp. 154–163, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Su, Q. Zhao, C. He et al., “miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program,” Nature Communications, vol. 6, article 8523, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. G. G. Teng, W. H. Wang, Y. Dai, S. J. Wang, Y. X. Chu, and J. Li, “Let-7b is involved in the inflammation and immune responses associated with helicobacter pylori infection by targeting toll-like receptor 4,” PLoS One, vol. 8, no. 2, article e56709, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Nishino, I. Kim, K. Chada, and S. J. Morrison, “Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression,” Cell, vol. 135, no. 2, pp. 227–239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Olivieri, R. Lazzarini, L. Babini et al., “Anti-inflammatory effect of ubiquinol-10 on young and senescent endothelial cells via miR-146a modulation,” Free Radical Biology & Medicine, vol. 63, pp. 410–420, 2013. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Zhang, Y. J. Li, X. Y. Wu, Z. Hong, and W. S. Wei, “MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting toll-like receptor 4,” Journal of Neurochemistry, vol. 132, no. 6, pp. 713–723, 2015. View at Publisher · View at Google Scholar · View at Scopus
  100. D. Guo, Y. Ye, J. Qi et al., “Age and sex differences in microRNAs expression during the process of thymus aging,” Acta Biochimica et Biophysica Sinica, vol. 49, no. 5, pp. 409–419, 2017. View at Publisher · View at Google Scholar
  101. J. Singh, E. Boopathi, S. Addya et al., “Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: role of microRNA-133a,” American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 311, no. 5, pp. G964–G973, 2016. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Besler, D. Urban, S. Watzka et al., “Endomyocardial miR-133a levels correlate with myocardial inflammation, improved left ventricular function, and clinical outcome in patients with inflammatory cardiomyopathy,” European Journal of Heart Failure, vol. 18, no. 12, pp. 1442–1451, 2016. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Magenta, E. Dellambra, R. Ciarapica, and M. C. Capogrossi, “Oxidative stress, microRNAs and cytosolic calcium homeostasis,” Cell Calcium, vol. 60, no. 3, pp. 207–217, 2016. View at Publisher · View at Google Scholar · View at Scopus
  104. R. W. Georgantas, K. Streicher, S. A. Greenberg et al., “Inhibition of myogenic microRNAs 1, 133, and 206 by inflammatory cytokines links inflammation and muscle degeneration in adult inflammatory myopathies,” Arthritis & Rhematology, vol. 66, no. 4, pp. 1022–1033, 2014. View at Publisher · View at Google Scholar · View at Scopus
  105. M. P. Boldin, K. D. Taganov, D. S. Rao et al., “miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice,” The Journal of Experimental Medicine, vol. 208, no. 6, pp. 1189–1201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Olivieri, R. Lazzarini, R. Recchioni et al., “MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling,” Age, vol. 35, no. 4, pp. 1157–1172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Bhaumik, G. K. Scott, S. Schokrpur et al., “MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8,” Aging, vol. 1, no. 4, pp. 402–411, 2009. View at Publisher · View at Google Scholar
  108. M. P. Murphy, “How mitochondria produce reactive oxygen species,” The Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Ji, K. Lv, H. Chen et al., “MiR-146a regulates SOD2 expression in H2O2 stimulated PC12 cells,” PLoS One, vol. 8, no. 7, article e69351, 2013. View at Publisher · View at Google Scholar · View at Scopus