Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017, Article ID 5380638, 9 pages
https://doi.org/10.1155/2017/5380638
Clinical Study

A Double-Blinded Randomized Study Investigating a Possible Anti-Inflammatory Effect of Saxagliptin versus Placebo as Add-On Therapy in Patients with Both Type 2 Diabetes And Stable Coronary Artery Disease

1Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
2Center for Heart Failure Research, Oslo University Hospital Ullevaal, Oslo, Norway
3Faculty of Medicine, University of Oslo, Oslo, Norway
43rd Medical Department for Cardiology, Wilhelminenspital, Vienna, Austria
5The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital Ullevaal, Oslo, Norway

Correspondence should be addressed to Ida Unhammer Njerve; on.oiu.nisidem@evrejn.u.i

Received 24 November 2016; Revised 31 March 2017; Accepted 6 April 2017; Published 17 May 2017

Academic Editor: Julio Galvez

Copyright © 2017 Ida Unhammer Njerve et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Dhillon, “Saxagliptin: a review in type 2 diabetes,” Drugs, vol. 75, no. 15, pp. 1783–1796, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. S. E. Inzucchi, R. M. Bergenstal, J. B. Buse et al., “Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the study of diabetes,” Diabetologia, vol. 58, no. 3, pp. 429–442, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Drucker and M. A. Nauck, “The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes,” Lancet, vol. 368, no. 9548, pp. 1696–1705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. P. Fadini and A. Avogaro, “Cardiovascular effects of DPP-4 inhibition: beyond GLP-1,” Vascular Pharmacology, vol. 55, no. 1–3, pp. 10–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Vittone, A. Liberman, D. Vasic et al., “Sitagliptin reduces plaque macrophage content and stabilises arteriosclerotic lesions in Apoe (−/−) mice,” Diabetologia, vol. 55, no. 8, pp. 2267–2275, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Matsubara, S. Sugiyama, K. Sugamura et al., “A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice,” Journal of the American College of Cardiology, vol. 59, no. 3, pp. 265–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Shah, T. Kampfrath, J. A. Deiuliis et al., “Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis,” Circulation, vol. 124, no. 21, pp. 2338–2349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Matsubara, S. Sugiyama, E. Akiyama et al., “Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes,” Circulation Journal, vol. 77, no. 5, pp. 1337–1344, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Makdissi, H. Ghanim, M. Vora et al., “Sitagliptin exerts an antinflammatory action,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 9, pp. 3333–3341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Satoh-Asahara, Y. Sasaki, H. Wada et al., “A dipeptidyl peptidase-4 inhibitor, sitagliptin, exerts anti-inflammatory effects in type 2 diabetic patients,” Metabolism, vol. 62, no. 3, pp. 347–351, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Mita, N. Katakami, H. Yoshii et al., “Alogliptin, a dipeptidyl peptidase 4 inhibitor, prevents the progression of carotid atherosclerosis in patients with type 2 diabetes: the Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A),” Diabetes Care, vol. 39, no. 1, pp. 139–148, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Øvstebø, H. C. Aass, K. B. Haug et al., “LPS from Neisseria meningitidis is crucial for inducing monocyte- and microparticle-associated tissue factor activity but not for tissue factor expression,” Innate Immunity, vol. 18, no. 4, pp. 580–591, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔC(T)) method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. A. S. Møller, R. Øvstebø, A. B. Westvik, G. B. Joø, K. B. Haug, and P. Kierulf, “Effects of bacterial cell wall components (PAMPs) on the expression of monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and the chemokine receptor CCR2 by purified human blood monocytes,” Journal of Endotoxin Research, vol. 9, no. 6, pp. 349–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. P. Singh, V. N. Vangaveti, and U. H. Malabu, “Dipeptidyl peptidase-4 inhibitors and their potential role in the management of atherosclerosis-a review,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 9, no. 4, pp. 223–229, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. K. N. Couper, D. G. Blount, and E. M. Riley, “IL-10: The master regulator of immunity to infection,” Journal of Immunology, vol. 180, no. 9, pp. 5771–5777, 2008. View at Publisher · View at Google Scholar
  17. M. R. de Waal, J. Abrams, B. Bennett, C. G. Figdor, and J. E. de Vries, “Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes,” The Journal of Experimental Medicine, vol. 174, no. 5, pp. 1209–1220, 1991. View at Publisher · View at Google Scholar
  18. D. Reinhold, S. Ansorge, and E. D. Schleicher, “Elevated glucose levels stimulate transforming growth factor-β1 (TGF-β1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells,” Hormone and Metabolic Research, vol. 28, no. 6, pp. 267–270, 1996. View at Publisher · View at Google Scholar
  19. I. Torres-Castro, Ú. D. Arroyo-Camarena, C. P. Martínez-Reyes et al., “Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose,” Immunology Letters, vol. 176, pp. 81–89, 2016. View at Publisher · View at Google Scholar · View at Scopus
  20. M. R. Rizzo, M. Barbieri, R. Marfella, and G. Paolisso, “Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition,” Diabetes Care, vol. 35, no. 10, pp. 2076–2082, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Takemoto and J. K. Liao, “Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1712–1719, 2001. View at Publisher · View at Google Scholar
  22. K. A. Müller, M. Chatterjee, D. Rath, and T. Geisler, “Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD,” Thrombosis and Haemostasis, vol. 114, no. 3, pp. 498–518, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. B. M. Scirica, D. L. Bhatt, E. Braunwald et al., “Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 369, no. 14, pp. 1317–1326, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. J. B. Green, M. A. Bethel, P. W. Armstrong et al., “Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes,” The New England Journal of Medicine, vol. 373, no. 3, pp. 232–242, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. W. B. White, C. P. Cannon, S. R. Heller et al., “Alogliptin after acute coronary syndrome in patients with type 2 diabetes,” The New England Journal of Medicine, vol. 369, no. 14, pp. 1327–1335, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. T. V. Fiorentino and G. Sesti, “Lessons learned from cardiovascular outcome clinical trials with dipeptidyl peptidase 4 (DPP-4) inhibitors,” Endocrine, vol. 53, no. 2, pp. 372–380, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Zinman, C. Wanner, J. M. Lachin et al., “Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes,” The New England Journal of Medicine, vol. 373, no. 22, pp. 2117–2128, 2015. View at Publisher · View at Google Scholar · View at Scopus