Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2017 (2017), Article ID 7517350, 9 pages
https://doi.org/10.1155/2017/7517350
Review Article

Granulocyte Colony-Stimulating Factor and Its Potential Application for Skeletal Muscle Repair and Regeneration

1Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
2Centre for Molecular and Medical Research, School of Medicine, Deakin University, Waurn Ponds, VIC, Australia

Correspondence should be addressed to Craig R. Wright; ua.ude.nikaed@thgirw.giarc

Received 16 August 2017; Accepted 10 October 2017; Published 7 December 2017

Academic Editor: Shin-ichi Yokota

Copyright © 2017 Craig R. Wright et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. A. Nicola, D. Metcalf, G. R. Johnson, and A. W. Burgess, “Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors,” Blood, vol. 54, no. 3, pp. 614–627, 1979. View at Google Scholar
  2. D. Metcalf and N. A. Nicola, “Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells,” Journal of Cellular Physiology, vol. 116, no. 2, pp. 198–206, 1983. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Nagata and R. Fukunaga, “Granulocyte colony-stimulating factor and its receptor,” Progress in Growth Factor Research, vol. 3, no. 2, pp. 131–141, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. A. W. Roberts, “G-CSF: a key regulator of neutrophil production, but that’s not all!,” Growth Factor, vol. 23, no. 1, pp. 33–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. H. Bronchud, J. H. Scarffe, N. Thatcher et al., “Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer,” British Journal of Cancer, vol. 56, no. 6, pp. 809–813, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Reikvam, U. S. Blom, E. Kristoffersen, K. Liseth, O. Bruserud, and T. Hervig, “Granulocyte transfusion,” Tidsskrift for Den norske legeforening, vol. 129, no. 5, pp. 416–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Lyman, A. Lalla, R. Barron, and R. W. Dubois, “Cost-effectiveness of pegfilgrastim versus 6-day filgrastim primary prophylaxis in patients with non-Hodgkin’s lymphoma receiving CHOP-21 in United States,” Current Medical Research and Opinion, vol. 25, no. 2, pp. 401–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Shochat and V. Rom-Kedar, “Novel strategies for granulocyte colony-stimulating factor treatment of severe prolonged neutropenia suggested by mathematical modeling,” Clinical Cancer Research, vol. 14, no. 20, pp. 6354–6363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. W. Tuffaha, I. M. Treish, and L. Zaru, “The use and effectiveness of granulocyte colony-stimulating factor in primary prophylaxis for febrile neutropenia in the outpatient setting,” Journal Of Oncology Pharmacy Practice, vol. 14, no. 3, pp. 131–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Eldar-Lissai, L. E. Cosler, E. Culakova, and G. H. Lyman, “Economic analysis of prophylactic pegfilgrastim in adult cancer patients receiving chemotherapy,” Value in Health, vol. 11, no. 2, pp. 172–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Y. Khrichkova, V. E. Gol'dberg, V. V. Zhdanov et al., “Mechanisms of stimulation of granulocytopoiesis with neupogen in patients with breast cancer during chemotherapy,” Bulletin of Experimental Biology and Medicine, vol. 145, no. 4, pp. 467–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Morishita and R. C. Leonard, “Pegfilgrastim; a neutrophil mediated granulocyte colony stimulating factor–expanding uses in cancer chemotherapy,” Expert Opinion on Biological Therapy, vol. 8, no. 7, pp. 993–1001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. de la Rubia and M. A. Sanz, “Autologous peripheral blood stem cell transplantation for acute leukaemias,” Best Practice & Research Clinical Haematology, vol. 12, no. 1-2, pp. 139–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. G. J. Elfenbein, “Granulocyte-colony stimulating factor primed bone marrow and granulocyte-colony stimulating factor mobilized peripheral blood stem cells are equivalent for engraftment: which to choose?” Pediatric Transplantation, vol. 9, Supplement 7, pp. 37–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. L. Pitrak, “Filgrastim treatment of HIV-infected patients improves neutrophil function,” AIDS, vol. 13, Supplement 2, pp. S25–S30, 1999. View at Google Scholar
  16. M. de Haas, J. M. Kerst, C. E. van der Schoot et al., “Granulocyte colony-stimulating factor administration to healthy volunteers: analysis of the immediate activating effects on circulating neutrophils,” Blood, vol. 84, no. 11, pp. 3885–3894, 1994. View at Google Scholar
  17. D. C. Dale and T. H. Price, “Granulocyte transfusion therapy: a new era?” Current Opinion in Hematology, vol. 16, no. 1, pp. 1-2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. H. Price, “Granulocyte transfusion: current status,” Seminars in Hematology, vol. 44, no. 1, pp. 15–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Fukunaga, Y. Seto, S. Mizushima, and S. Nagata, “Three different mRNAs encoding human granulocyte colony-stimulating factor receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 22, pp. 8702–8706, 1990. View at Publisher · View at Google Scholar
  20. J. E. Layton and N. E. Hall, “The interaction of G-CSF with its receptor,” Frontiers in Bioscience, vol. 11, pp. 3181–3189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. I. P. Touw and G.-J. M. van de Geijn, “Granulocyte colony-stimulating factor and its receptor in normal myeloid cell development, leukemia and related blood cell disorders,” Frontiers in Bioscience, vol. 12, pp. 800–815, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Baker, S. G. Rane, and E. P. Reddy, “Hematopoietic cytokine receptor signaling,” Oncogene, vol. 26, no. 47, pp. 6724–6737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Yamasaki, S. Naito, H. Anaguchi, T. Ohkubo, and Y. Ota, “Solution structure of an extracellular domain containing the WSxWS motif of the granulocyte colony-stimulating factor receptor and its interaction with ligand,” Nature Structural Biology, vol. 4, no. 6, pp. 498–504, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Liongue, C. Wright, A. P. Russell, and A. C. Ward, “Granulocyte colony-stimulating factor receptor: stimulating granulopoiesis and much more,” The International Journal of Biochemistry & Cell Biology, vol. 41, no. 12, pp. 2372–2375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. C. Ward, M. H. Hermans, L. Smith et al., “Tyrosine-dependent and -independent mechanisms of STAT3 activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration,” Blood, vol. 93, no. 1, pp. 113–124, 1999. View at Google Scholar
  26. A. D. Panopoulos, L. Zhang, J. W. Snow et al., “STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils,” Blood, vol. 108, no. 12, pp. 3682–3690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. B. R. Avalos, “Molecular analysis of the granulocyte colony-stimulating factor receptor,” Blood, vol. 88, no. 3, pp. 761–777, 1996. View at Google Scholar
  28. G. D. Demetri and J. D. Griffin, “Granulocyte colony-stimulating factor and its receptor,” Blood, vol. 78, no. 11, pp. 2791–2808, 1991. View at Google Scholar
  29. J. E. Darnell Jr., “STATs and gene regulation,” Science, vol. 277, no. 5332, pp. 1630–1635, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Decker and P. Kovarik, “Transcription factor activity of STAT proteins: structural requirements and regulation by phosphorylation and interacting proteins,” Cellular and Molecular Life Sciences (CMLS), vol. 55, no. 12, pp. 1535–1546, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. C. Ward, L. Smith, J. P. de Koning, Y. van Aesch, and I. P. Touw, “Multiple signals mediate proliferation, differentiation, and survival from the granulocyte colony-stimulating factor receptor in myeloid 32D cells,” Journal of Biological Chemistry, vol. 274, no. 21, pp. 14956–14962, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. C. Ward, Y. M. van Aesch, J. Gits et al., “Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congenital neutropenia hyporesponsive to G-CSF treatment,” The Journal of Experimental Medicine, vol. 190, no. 4, pp. 497–508, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Corey, A. L. Burkhardt, J. B. Bolen, R. L. Geahlen, L. S. Tkatch, and D. J. Tweardy, “Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 4683–4687, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Ward, J. L. Monkhouse, X. F. Csar, I. P. Touw, and P. A. Bello, “The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor,” Biochemical and Biophysical Research Communications, vol. 251, no. 1, pp. 117–123, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Glass, “Molecular mechanisms modulating muscle mass,” Trends in Molecular Medicine, vol. 9, no. 8, pp. 344–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. N. Stitt, D. Drujan, B. A. Clarke et al., “The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors,” Molecular Cell, vol. 14, no. 3, pp. 395–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. C. Bodine, T. N. Stitt, M. Gonzalez et al., “Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo,” Nature Cell Biology, vol. 3, no. 11, pp. 1014–1019, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. B. DeBosch, I. Treskov, T. S. Lupu et al., “Akt1 is required for physiological cardiac growth,” Circulation, vol. 113, no. 17, pp. 2097–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. T. F. Franke, D. R. Kaplan, and L. C. Cantley, “PI3K: downstream AKTion blocks apoptosis,” Cell, vol. 88, no. 4, pp. 435–437, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Inoki, Y. Li, T. Zhu, J. Wu, and K.-L. Guan, “TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling,” Nature Cell Biology, vol. 4, no. 9, pp. 648–657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Kamezaki, K. Shimoda, A. Numata et al., “Roles of Stat3 and ERK in G-CSF signaling,” Stem Cells, vol. 23, no. 2, pp. 252–263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Frodin and S. Gammeltoft, “Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction,” Molecular and Cellular Endocrinology, vol. 151, no. 1-2, pp. 65–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Schneider, C. Kruger, T. Steigleder et al., “The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis,” The Journal of Clinical Investigation, vol. 115, no. 8, pp. 2083–2098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Harada, Y. Qin, H. Takano et al., “G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes,” Nature Medicine, vol. 11, no. 3, pp. 305–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Li, G. Takemura, H. Okada et al., “Treatment with granulocyte colony-stimulating factor ameliorates chronic heart failure,” Laboratory Investigation, vol. 86, no. 1, pp. 32–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Naito, K. Goto, S. Morioka et al., “Administration of granulocyte colony-stimulating factor facilitates the regenerative process of injured mice skeletal muscle via the activation of Akt/GSK3αβ signals,” European Journal of Applied Physiology, vol. 105, no. 4, pp. 643–651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Hara, S. Yuasa, K. Shimoji et al., “G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation,” The Journal of Experimental Medicine, vol. 208, no. 4, pp. 715–727, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Anderlini, “Effects and safety of granulocyte colony-stimulating factor in healthy volunteers,” Current Opinion in Hematology, vol. 16, no. 1, pp. 35–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Anderlini, D. Przepiorka, R. Champlin, and M. Körbling, “Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals,” Blood, vol. 88, no. 8, pp. 2819–2825, 1996. View at Google Scholar
  50. F. Kirsch, C. Kruger, and A. Schneider, “The receptor for granulocyte-colony stimulating factor (G-CSF) is expressed in radial glia during development of the nervous system,” BMC Developmental Biology, vol. 8, no. 1, p. 32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Solaroglu, V. Jadhav, and J. H. Zhang, “Neuroprotective effect of granulocyte-colony stimulating factor,” Frontiers in Bioscience, vol. 12, pp. 712–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Wang, L. Yao, S. Zhao et al., “Granulocyte-colony stimulating factor promotes proliferation, migration and invasion in glioma cells,” Cancer Biology & Therapy, vol. 13, no. 6, pp. 389–400, 2012. View at Publisher · View at Google Scholar
  53. C. Pitzer, S. Klussmann, C. Krüger et al., “The hematopoietic factor granulocyte-colony stimulating factor improves outcome in experimental spinal cord injury,” Journal of Neurochemistry, vol. 113, no. 4, pp. 930–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Nishio, M. Koda, T. Kamada et al., “Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 8, pp. 724–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Pitzer, C. Kruger, C. Plaas et al., “Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis,” Brain, vol. 131, no. 12, pp. 3335–3347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. K. J. Tsai, Y. C. Tsai, and C. K. Shen, “G-CSF rescues the memory impairment of animal models of Alzheimer’s disease,” The Journal of Experimental Medicine, vol. 204, no. 6, pp. 1273–1280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. W. C. Shyu, S. Z. Lin, C. C. Lee, D. D. Liu, and H. Li, “Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized controlled trial,” Canadian Medical Association Journal, vol. 174, no. 7, pp. 927–933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Solaroglu, J. Cahill, V. Jadhav, and J. H. Zhang, “A novel neuroprotectant granulocyte-colony stimulating factor,” Stroke, vol. 37, no. 4, pp. 1123–1128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Shimoji, S. Yuasa, T. Onizuka et al., “G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs,” Cell Stem Cell, vol. 6, no. 3, pp. 227–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Takano, K. Ueda, H. Hasegawa, and I. Komuro, “G-CSF therapy for acute myocardial infarction,” Trends in Pharmacological Sciences, vol. 28, no. 10, pp. 512–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Valgimigli, G. M. Rigolin, C. Cittanti et al., “Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile,” European Heart Journal, vol. 26, no. 18, pp. 1838–1845, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Suzuki, K. Nagashima, M. Arai et al., “Effect of granulocyte colony-stimulating factor treatment at a low dose but for a long duration in patients with coronary heart disease,” Circulation Journal, vol. 70, no. 4, pp. 430–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. S. G. Ellis, M. S. Penn, B. Bolwell et al., “Granulocyte colony stimulating factor in patients with large acute myocardial infarction: results of a pilot dose-escalation randomized trial,” American Heart Journal, vol. 152, no. 6, pp. 1051.e9–1051.e14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. R. S. Ripa, E. Jorgensen, Y. Wang et al., “Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial,” Circulation, vol. 113, no. 16, pp. 1983–1992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Abdel-Latif, R. Bolli, E. K. Zuba-Surma, I. M. Tleyjeh, C. A. Hornung, and B. Dawn, “Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials,” American Heart Journal, vol. 156, no. 2, pp. 216–226.e9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. W. R. Schabitz, R. Laage, G. Vogt et al., “AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke,” Stroke, vol. 41, no. 11, pp. 2545–2551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. E. B. Ringelstein, V. Thijs, B. Norrving et al., “Granulocyte colony–stimulating factor in patients with acute ischemic stroke: results of the AX200 for ischemic stroke trial,” Stroke, vol. 44, no. 10, pp. 2681–2687, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Yamada, K. Suzuki, S. Kudo, M. Totsuka, S. Nakaji, and K. Sugawara, “Raised plasma G-CSF and IL-6 after exercise may play a role in neutrophil mobilization into the circulation,” Journal of Applied Physiology, vol. 92, no. 5, pp. 1789–1794, 2002. View at Publisher · View at Google Scholar
  69. F. C. Mooren, K. Volker, R. Klocke, S. Nikol, J. Waltenberger, and K. Kruger, “Exercise delays neutrophil apoptosis by a G-CSF-dependent mechanism,” Journal of Applied Physiology, vol. 113, no. 7, pp. 1082–1090, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Kruger, C. Pilat, M. Schild et al., “Progenitor cell mobilization after exercise is related to systemic levels of G-CSF and muscle damage,” Scandinavian Journal of Medicine & Science in Sports, vol. 25, no. 3, pp. e283–e291, 2015. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Liu, H. Y. Wu, R. Wesselschmidt, T. Kornaga, and D. C. Link, “Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor–deficient mice,” Immunity, vol. 5, no. 5, pp. 491–501, 1996. View at Publisher · View at Google Scholar · View at Scopus
  72. J. M. Peterson and F. X. Pizza, “Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro,” Journal of Applied Physiology, vol. 106, no. 1, pp. 130–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. M. Ordelheide, N. Gommer, A. Bohm et al., “Granulocyte colony-stimulating factor (G-CSF): a saturated fatty acid-induced myokine with insulin-desensitizing properties in humans,” Molecular Metabolism, vol. 5, no. 4, pp. 305–316, 2016. View at Publisher · View at Google Scholar · View at Scopus
  74. C. R. Wright, E. L. Brown, P. A. Della Gatta et al., “Regulation of granulocyte colony-stimulating factor and its receptor in skeletal muscle is dependent upon the type of inflammatory stimulus,” Journal of Interferon & Cytokine Research, vol. 35, no. 9, pp. 710–9, 2015. View at Publisher · View at Google Scholar · View at Scopus
  75. C. R. Wright, E. L. Brown, P. A. Della Gatta, A. C. Ward, G. S. Lynch, and A. P. Russell, “G-CSF does not influence C2C12 myogenesis despite receptor expression in healthy and dystrophic skeletal muscle,” Frontiers in Physiology, vol. 5, p. 170, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. I. Stratos, R. Rotter, C. Eipel, T. Mittlmeier, and B. Vollmar, “Granulocyte-colony stimulating factor enhances muscle proliferation and strength following skeletal muscle injury in rats,” Journal Of Applied Physiology, vol. 103, no. 5, pp. 1857–1863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Hayashiji, S. Yuasa, Y. Miyagoe-Suzuki et al., “G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy,” Nature Communications, vol. 6, p. 6745, 2015. View at Publisher · View at Google Scholar · View at Scopus
  78. G. F. Simoes, S. U. Benitez, and A. L. Oliveira, “Granulocyte colony-stimulating factor (G-CSF) positive effects on muscle fiber degeneration and gait recovery after nerve lesion in MDX mice,” Brain and Behavior, vol. 4, no. 5, pp. 738–753, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Pollari, E. Savchenko, M. Jaronen et al., “Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis,” Journal of Neuroinflammation, vol. 8, no. 1, p. 74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. F. C. Mooren and K. Kruger, “Apoptotic lymphocytes induce progenitor cell mobilization after exercise,” Journal of Applied Physiology, vol. 119, no. 2, pp. 135–139, 2015. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Sakuma, M. Yamazaki, A. Okawa et al., “Neuroprotective therapy using granulocyte colony–stimulating factor for patients with worsening symptoms of thoracic myelopathy: a multicenter prospective controlled trial,” Spine, vol. 37, no. 17, pp. 1475–1478, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Yamazaki, T. Sakuma, K. Kato, T. Furuya, and M. Koda, “Granulocyte colony-stimulating factor reduced neuropathic pain associated with thoracic compression myelopathy: report of two cases,” The Journal of Spinal Cord Medicine, vol. 36, no. 1, pp. 40–43, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Kato, M. Koda, H. Takahashi et al., “Granulocyte colony-stimulating factor attenuates spinal cord injury-induced mechanical allodynia in adult rats,” Journal of the Neurological Sciences, vol. 355, no. 1-2, pp. 79–83, 2015. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Kamiya, M. Koda, T. Furuya et al., “Neuroprotective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: a comparison with high-dose methylprednisolone as a historical control,” European Spine Journal, vol. 24, no. 5, pp. 963–967, 2015. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Kato, M. Yamazaki, A. Okawa et al., “Intravenous administration of granulocyte colony-stimulating factor for treating neuropathic pain associated with compression myelopathy: a phase I and IIa clinical trial,” European Spine Journal, vol. 22, no. 1, pp. 197–204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Okurowska-Zawada, W. Kulak, D. Sienkiewicz et al., “Safety and efficacy of granulocyte colony stimulating factor in a patient with tetraplegia caused by cervical hyperextension injury: a case report,” Progress in Health Sciences, vol. 4, no. 2, pp. 181–184, 2014. View at Google Scholar
  87. D. Sienkiewicz, W. Kulak, B. Okurowska-Zawada et al., “Potential beneficial effects of granulocyte colony-stimulating factor therapy for spastic paraparesis in a patient with kyphoscoliosis: a case report,” Neuropediatrics, vol. 45, no. 05, pp. 325–327, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. C. deBruin, P. Lincoln, C. Hartley, A. Shehabeldin, G. Van, and S. J. Szilvassy, “Most purported antibodies to the human granulocyte colony-stimulating factor receptor are not specific,” Experimental Hematology, vol. 38, no. 11, pp. 1022–1035, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. M. H. Hermans, A. C. Ward, C. Antonissen, A. Karis, B. Lowenberg, and I. P. Touw, “Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia,” Blood, vol. 92, no. 1, pp. 32–39, 1998. View at Google Scholar
  90. L. A. Megeney, R. L. Perry, J. E. LeCouter, and M. A. Rudnicki, “bFGF and LIF signaling activates STAT3 in proliferating myoblasts,” Developmental Genetics, vol. 19, no. 2, pp. 139–145, 1996. View at Publisher · View at Google Scholar
  91. E. E. Spangenburg and F. W. Booth, “Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation,” American Journal of Physiology Cell Physiology, vol. 283, no. 1, pp. C204–C211, 2002. View at Publisher · View at Google Scholar
  92. K. Kami and E. Senba, “In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles,” The Journal of Histochemistry and Cytochemistry, vol. 50, no. 12, pp. 1579–1589, 2002. View at Publisher · View at Google Scholar
  93. L. Sun, K. Ma, H. Wang et al., “JAK1–STAT1–STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts,” The Journal of Cell Biology, vol. 179, no. 1, pp. 129–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Wang, C. Wang, F. Xiao, H. Wang, and Z. Wu, “JAK2/STAT2/STAT3 are required for myogenic differentiation,” Journal of Biological Chemistry, vol. 283, no. 49, pp. 34029–34036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Dong and A. C. Larner, “Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the Janus kinases,” Blood, vol. 95, no. 5, pp. 1656–1662, 2000. View at Google Scholar
  96. K.-M. V. Lai, M. Gonzalez, W. T. Poueymirou et al., “Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy,” Molecular and Cellular Biology, vol. 24, no. 21, pp. 9295–9304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. W. S. Chen, P. Z. Xu, K. Gottlob et al., “Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene,” Genes & Development, vol. 15, no. 17, pp. 2203–2208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Cho, J. Mu, J. K. Kim et al., “Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ),” Science, vol. 292, no. 5522, pp. 1728–1731, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Wang, J. Xue, E. V. Zadorozny, and L. J. Robinson, “G-CSF stimulates Jak2-dependent Gab2 phosphorylation leading to Erk1/2 activation and cell proliferation,” Cellular Signalling, vol. 20, no. 10, pp. 1890–1899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. N. C. Jones, Y. V. Fedorov, R. S. Rosenthal, and B. B. Olwin, “ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion,” Journal of Cellular Physiology, vol. 186, no. 1, pp. 104–115, 2001. View at Publisher · View at Google Scholar
  101. O. Tura, J. Crawford, G. R. Barclay et al., “Granulocyte colony-stimulating factor (G-CSF) depresses angiogenesis in vivo and in vitro: implications for sourcing cells for vascular regeneration therapy,” Journal of Thrombosis and Haemostasis, vol. 8, no. 7, pp. 1614–1623, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. T. S. Kendrick, R. J. Lipscombe, O. Rausch et al., “Contribution of the membrane-distal tyrosine in intracellular signaling by the granulocyte colony-stimulating factor receptor,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 326–340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. N. A. Dumont and J. Frenette, “Macrophage colony-stimulating factor–induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes,” The American Journal of Pathology, vol. 182, no. 2, pp. 505–515, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. C. R. Wright, E. L. Brown, A. C. Ward, and A. P. Russell, “G-CSF treatment can attenuate dexamethasone-induced reduction in C2C12 myotube protein synthesis,” Cytokine, vol. 73, no. 1, pp. 1–7, 2015. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Zhang, Y. Li, Y. Wu, L. Wang, X. Wang, and J. Du, “Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration,” Journal of Biological Chemistry, vol. 288, no. 3, pp. 1489–1499, 2013. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Monti, M. Cozzolino, F. Cozzolino, R. Tedesco, and P. Pucci, “Functional proteomics: protein-protein interactions in vivo,” The Italian Journal of Biochemistry, vol. 56, no. 4, pp. 310–4, 2007. View at Google Scholar
  107. J. J. McCarthy, R. Srikuea, T. J. Kirby, C. A. Peterson, and K. A. Esser, “Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting,” Skeletal Muscle, vol. 2, no. 1, p. 8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Liu, Y. Zhou, X. Qi et al., “CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling,” Human Genetics, vol. 136, no. 1, pp. 1–12, 2017. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Wright, Role and Regulation of G-CSF and Its Receptor in Skeletal Muscle, [Ph.D. thesis], Deakin Univerity, 2013.