Table of Contents Author Guidelines Submit a Manuscript
Mediators of Inflammation
Volume 2018, Article ID 3421897, 9 pages
https://doi.org/10.1155/2018/3421897
Research Article

Upregulation of Cardiac IL-10 and Downregulation of IFN-γ in Balb/c IL-4−/− in Acute Chagasic Myocarditis due to Colombian Strain of Trypanosoma cruzi

1Department of Parasitology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil
2Institute of Tropical Pathology and Public Health of Federal University of Goiás, Federal University of Goiás, 74605-050 Goiânia, Brazil
3General Pathology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, 38025-180 Uberaba, MG, Brazil

Correspondence should be addressed to Juliana Reis Machado; moc.liamg@laregaigolotap.anailuj

Received 15 July 2018; Accepted 5 November 2018; Published 28 November 2018

Academic Editor: Daniela Novick

Copyright © 2018 Marcos Vinicius da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Marin-Neto, É. Cunha-Neto, B. C. Maciel, and M. V. Simões, “Pathogenesis of chronic Chagas heart disease,” Circulation, vol. 115, no. 9, pp. 1109–1123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. World Health Organization (WHO), Preventing Mother-to-Child Transmission of Chagas disease: from Control to Elimination, WHO: Neglected tropical disease, 2018.
  3. B. A. Burleigh and N. W. Andrews, “The mechanisms of Trypanosoma cruzi invasion of mammalian cells,” Annual Review of Microbiology, vol. 49, no. 1, pp. 175–200, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. T. C. de Araújo-Jorge and S. L. de Castro, Doença de Chagas: Manual Para Experimentação Animal, Editora FIOCRUZ, Rio de Janeiro, 2000. View at Publisher · View at Google Scholar
  5. E. E. Federici, W. H. Abelmann, and F. A. Neva, “Chronic and progressive myocarditis and myositis in C3H mice infected with Trypanosoma cruzi,” The American Journal of Tropical Medicine and Hygiene, vol. 13, no. 2, pp. 272–280, 1964. View at Publisher · View at Google Scholar · View at Scopus
  6. S. G. Andrade and J. B. Magalhães, “Biodemes and zymodemes of Trypanosoma cruzi strains: correlations with clinical data and experimental pathology,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 30, no. 1, pp. 27–35, 1997. View at Publisher · View at Google Scholar
  7. S. G. Andrade, A. R. Pimentel, M. M. de Souza, and Z. A. Andrade, “Interstitial dendritic cells of the heart harbor Trypanosoma cruzi antigens in experimentally infected dogs: importance for the pathogenesis of chagasic myocarditis,” The American Journal of Tropical Medicine and Hygiene, vol. 63, no. 1, pp. 64–70, 2000. View at Publisher · View at Google Scholar
  8. I. A. Abrahamsohn and R. L. Coffman, “Trypanosoma cruzi: IL-10, TNF, IFN-γ, and IL-12 regulate innate and acquired immunity to infection,” Experimental Parasitology, vol. 84, no. 2, pp. 231–244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Hunter, L. A. Ellis-Neyes, T. Slifer et al., “IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi,” The Journal of Immunology, vol. 158, pp. 3311–3316, 1997. View at Google Scholar
  10. R. L. Tarleton, B. H. Koller, A. Latour, and M. Postan, “Susceptibility of β2-microglobulin-deficient mice to Trypanosoma cruzi infection,” Nature, vol. 356, no. 6367, pp. 338–340, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Rottenberg, M. Bakhiet, T. Olsson et al., “Differential susceptibilities of mice genomically deleted of CD4 and CD8 to infections with Trypanosoma cruzi or Trypanosoma brucei,” Infection and Immunity, vol. 61, no. 12, pp. 5129–5133, 1993. View at Google Scholar
  12. E. C. Santos Lima and P. Minoprio, “Chagas’ disease is attenuated in mice lacking γδ T cells,” Infection and Immunity, vol. 64, no. 1, pp. 215–221, 1996. View at Google Scholar
  13. M. F. Lopes, M. P. Nunes, A. Henriques-Pons et al., “Increased susceptibility of Fas ligand-deficient gld mice to Trypanosoma cruzi infection due to a Th2-biased host immune response,” European Journal of Immunology, vol. 29, no. 1, pp. 81–89, 1999. View at Publisher · View at Google Scholar
  14. M. d. L. Higuchi, “Chronic chagasic cardiopathy: the product of a turbulent host-parasite relationship,” Revista do Instituto de Medicina Tropical de São Paulo, vol. 39, no. 1, pp. 53–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. Silva, D. R. Twardzik, and S. G. Reed, “Regulation of Trypanosoma cruzi infections in vitro and in vivo by transforming growth factor β (TGF-β),” The Journal of Experimental Medicine, vol. 174, no. 3, pp. 539–545, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Savino, D. M. S. Villa-Verde, D. A. Mendes-da-Cruz et al., “Cytokines and cell adhesion receptors in the regulation of immunity to Trypanosoma cruzi,” Cytokine & Growth Factor Reviews, vol. 18, no. 1-2, pp. 107–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Hurdayal and F. Brombacher, “The role of IL-4 and IL-13 in cutaneous leishmaniasis,” Immunology Letters, vol. 161, no. 2, pp. 179–183, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Alexander and K. Bryson, “T helper (h)1/Th2 and Leishmania: paradox rather than paradigm,” Immunology Letters, vol. 99, no. 1, pp. 17–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Alexander and F. Brombacher, “T helper1/T helper2 cells and resistance/susceptibility to Leishmania infection: is this paradigm still relevant?” Frontiers in Immunology, vol. 3, p. 80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. O. M. Martinez, R. S. Gibbons, M. R. Garovoy, and F. R. Aronson, “IL-4 inhibits IL-2 receptor expression and IL-2-dependent proliferation of human T cells,” The Journal of Immunology, vol. 144, pp. 2211–2215, 1990. View at Google Scholar
  21. M. B. P. Soares, K. N. Silva-Mota, R. S. Lima, M. C. Bellintani, L. Pontes-de-Carvalho, and R. Ribeiro-dos-Santos, “Modulation of chagasic cardiomyopathy by interleukin-4: dissociation between inflammation and tissue parasitism,” The American Journal of Pathology, vol. 159, no. 2, pp. 703–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Hölscher, G. Köhler, U. Müller, H. Mossmann, G. A. Schaub, and F. Brombacher, “Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma cruzi-infected mice deficient in gamma interferon receptor or inducible nitric oxide synthase,” Infection and Immunity, vol. 66, no. 3, pp. 1208–1215, 1998. View at Google Scholar
  23. J. J. Wirth, F. Kierszenbaum, and A. Zlotnik, “Effects of IL-4 on macrophage functions: increased uptake and killing of a protozoan parasite (Trypanosoma cruzi),” Immunology, vol. 66, no. 2, pp. 296–301, 1989. View at Google Scholar
  24. J. M. Golden and R. L. Tarleton, “Trypanosoma cruzi: cytokine effects on macrophage trypanocidal activity,” Experimental Parasitology, vol. 72, no. 4, pp. 391–402, 1991. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Reis Machado, M. V. Silva, D. C. Borges et al., “Immunopathological aspects of experimental Trypanosoma cruzi reinfections,” BioMed Research International, vol. 2014, Article ID 648715, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. S. R. Paludan, “Interleukin-4 and interferon-γ: the quintessence of a mutual antagonistic relationship,” Scandinavian Journal of Immunology, vol. 48, no. 5, pp. 459–468, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. M.-J. Pinazo, M. C. Thomas, J. Bustamante, I. C. Almeida, M. C. Lopez, and J. Gascon, “Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives,” Memórias do Instituto Oswaldo Cruz, vol. 110, no. 3, pp. 422–432, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. W. O. Dutra, C. A. S. Menezes, L. M. D. Magalhães, and K. J. Gollob, “Immunoregulatory networks in human Chagas disease,” Parasite Immunology, vol. 36, no. 8, pp. 377–387, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Camandaroba, T. S. Thé, D. H. Pessina, and S. G. Andrade, “Trypanosoma cruzi: clones isolated from the Colombian strain, reproduce the parental strain characteristics, with ubiquitous histotropism,” International Journal of Experimental Pathology, vol. 87, no. 3, pp. 209–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. O. Andrade, C. R. S. Machado, E. Chiari, S. D. J. Pena, and A. M. Macedo, “Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations,” Experimental Parasitology, vol. 100, no. 4, pp. 269–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Michailowsky, N. M. Silva, C. D. Rocha, L. Q. Vieira, J. Lannes-Vieira, and R. T. Gazzinelli, “Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection,” The American Journal of Pathology, vol. 159, no. 5, pp. 1723–1733, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. I. A. Abrahamsohn, A. P. G. da Silva, and R. L. Coffman, “Effects of interleukin-4 deprivation and treatment on resistance to Trypanosoma cruzi,” Infection and Immunity, vol. 68, no. 4, pp. 1975–1979, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. E. R. Lopes, E. Chapadeiro, W. L. Tafuri, A. O. Almeida, and D. Abraão, “Peso do coração e tipo de morte no chagásico,” Revista do Instituto de Medicina Tropical de São Paulo, vol. 12, pp. 293–297, 1970. View at Google Scholar
  34. J. A. Torreão, B. M. Ianni, C. Mady et al., “Myocardial tissue characterization in Chagas’ heart disease by cardiovascular magnetic resonance,” Journal of Cardiovascular Magnetic Resonance, vol. 17, no. 1, p. 97, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. M. d. L. Higuchi, T. de Brito, M. Martins Reis et al., “Correlation between Trypanosoma cruzi parasitism and myocardial inflammatory infiltrate in human chronic chagasic myocarditis: light microscopy and immunohistochemical findings,” Cardiovascular Pathology, vol. 2, no. 2, pp. 101–106, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Hiyama, S. Hamano, T. Nakamura, K. Nomoto, and I. Tada, “IL-4 reduces resistance of mice to Trypanosoma cruzi infection,” Parasitology Research, vol. 87, no. 4, pp. 269–274, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Langermans, M. E. van der Hulst, P. H. Nibbering, and R. van Furth, “Endogenous tumor necrosis factor alpha is required for enhanced antimicrobial activity against Toxoplasma gondii and Listeria monocytogenes in recombinant gamma interferon-treated mice,” Infection and Immunity, vol. 60, no. 12, pp. 5107–5112, 1992. View at Google Scholar
  38. A. A. Rodrigues, A. F. O. Notário, T. L. Teixeira et al., “A high throughput analysis of cytokines and chemokines expression during the course of Trypanosoma cruzi experimental oral infection,” Acta Tropica, vol. 157, pp. 42–53, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Haensel, P. J. Mills, R. A. Nelesen, M. G. Ziegler, and J. E. Dimsdale, “The relationship between heart rate variability and inflammatory markers in cardiovascular diseases,” Psychoneuroendocrinology, vol. 33, no. 10, pp. 1305–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Cunha-Neto, L. G. Nogueira, P. C. Teixeira et al., “Immunological and non-immunological effects of cytokines and chemokines in the pathogenesis of chronic Chagas disease cardiomyopathy,” Memórias do Instituto Oswaldo Cruz, vol. 104, Suppl 1, pp. 252–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. M. B. Bilate, V. M. Salemi, F. J. Ramires et al., “TNF blockade aggravates experimental chronic Chagas disease cardiomyopathy,” Microbes and Infection, vol. 9, no. 9, pp. 1104–1113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Rogge, L. Barberis-Maino, M. Biffi et al., “Selective expression of an interleukin-12 receptor component by human T helper 1 cells,” The Journal of Experimental Medicine, vol. 185, no. 5, pp. 825–832, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. M. S. Cardoso, J. L. Reis-Cunha, and D. C. Bartholomeu, “Evasion of the immune response by Trypanosoma cruzi during acute infection,” Frontiers in Immunology, vol. 6, p. 659, 2015. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Miyazaki, S. Hamano, S. Wang, Y. Shimanoe, Y. Iwakura, and H. Yoshida, “IL-17 is necessary for host protection against acute-phase Trypanosoma cruzi infection,” The Journal of Immunology, vol. 185, no. 2, pp. 1150–1157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. P. M. da Matta Guedes, F. R. S. Gutierrez, F. L. Maia et al., “IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis,” PLoS Neglected Tropical Diseases, vol. 4, no. 2, article e604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. D. A. Bermejo, S. W. Jackson, M. Gorosito-Serran et al., “Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells,” Nature Immunology, vol. 14, no. 5, pp. 514–522, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. G. R. Sousa, J. A. S. Gomes, M. P. S. Damasio et al., “The role of interleukin 17-mediated immune response in Chagas disease: high level is correlated with better left ventricular function,” PLoS One, vol. 12, no. 3, article e0172833, 2017. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Tosello Boari, M. C. Amezcua Vesely, D. A. Bermejo et al., “IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils,” PLoS Pathogens, vol. 8, no. 4, article e1002658, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. C. A. Lazarski, J. Ford, S. D. Katzman, A. F. Rosenberg, and D. J. Fowell, “IL-4 attenuates Th1-associated chemokine expression and Th1 trafficking to inflamed tissues and limits pathogen clearance,” PLoS One, vol. 8, no. 8, article e71949, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. M. López-Bravo, M. Minguito de la Escalera, P. M. Domínguez et al., “IL-4 blocks TH1-polarizing/inflammatory cytokine gene expression during monocyte-derived dendritic cell differentiation through histone hypoacetylation,” The Journal of Allergy and Clinical Immunology, vol. 132, no. 6, pp. 1409–1419.e13, 2013. View at Publisher · View at Google Scholar
  51. T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, “Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,” The Journal of Immunology, vol. 136, pp. 2348–2357, 1986. View at Google Scholar
  52. E. A. Kurt-Jones, S. Hamberg, J. Ohara, W. E. Paul, and A. K. Abbas, “Heterogeneity of helper/inducer T lymphocytes. I. Lymphokine production and lymphokine responsiveness,” The Journal of Experimental Medicine, vol. 166, no. 6, pp. 1774–1787, 1987. View at Publisher · View at Google Scholar · View at Scopus