Table of Contents Author Guidelines Submit a Manuscript
Minimally Invasive Surgery
Volume 2013 (2013), Article ID 142616, 10 pages
http://dx.doi.org/10.1155/2013/142616
Review Article

Hybrid Coronary Revascularization as a Safe, Feasible, and Viable Alternative to Conventional Coronary Artery Bypass Grafting: What Is the Current Evidence?

Department of Cardiothoracic Surgery, Maastricht University Medical Center, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands

Received 10 August 2012; Accepted 13 March 2013

Academic Editor: Casey M. Calkins

Copyright © 2013 Arjan J. F. P. Verhaegh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. W. Serruvs, M. C. Morice, A. P. Kappetein et al., “Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease,” New England Journal of Medicine, vol. 360, no. 10, pp. 961–972, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. L. Frye, E. L. Alderman, K. Andrews et al., “Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease: the Bypass Angioplasty Revascularization Investigation (BARI) investigators,” New England Journal of Medicine, vol. 335, no. 4, pp. 217–225, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. G. D. Angelini, P. Wilde, T. A. Salemo, G. Bosco, and A. M. Caiafiore, “Integrated left small thoracotomy and angioplasty for multivessel coronary artery revascularisation,” The Lancet, vol. 347, no. 9003, pp. 757–758, 1996. View at Google Scholar · View at Scopus
  4. R. A. Guyton, “Coronary artery bypass is superior to drug-eluting stents in multivessel coronary artery disease,” Annals of Thoracic Surgery, vol. 81, no. 6, pp. 1949–1957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Bonaros, T. Schachner, D. Wiedemann et al., “Quality of life improvement after robotically assisted coronary artery bypass grafting,” Cardiology, vol. 114, no. 1, pp. 59–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Gilard, E. Bezon, J. C. Cornily et al., “Same-day combined percutaneous coronary intervention and coronary artery surgery,” Cardiology, vol. 108, no. 4, pp. 363–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. N. Kon, E. N. Brown, R. Tran et al., “Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 2, pp. 367–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Zimrin, P. A. Reyes, B. Reicher, and R. S. Poston, “A hybrid alternative for high risk left main disease,” Catheterization and Cardiovascular Interventions, vol. 69, no. 1, pp. 123–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. A. Vassiliades Jr., J. S. Douglas, D. C. Morris et al., “Integrated coronary revascularization with drug-eluting stents: immediate and seven-month outcome,” Journal of Thoracic and Cardiovascular Surgery, vol. 131, no. 5, pp. 956–962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. Boylan, B. W. Lytle, F. D. Loop et al., “Surgical treatment of isolated left anterior descending coronary stenosis: comparison of left internal mammary artery and venous autograft at 18 to 20 years of follow-up,” Journal of Thoracic and Cardiovascular Surgery, vol. 107, no. 3, pp. 657–662, 1994. View at Google Scholar · View at Scopus
  11. G. Davidavicius, F. van Praet, S. Mansour et al., “Hybrid revascularization strategy: a pilot study on the association of robotically enhanced minimally invasive direct coronary artery bypass surgery and fractional flow reserve-guided percutaneous coronary intervention,” Circulation, vol. 112, no. 9, pp. I317–I322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. de Cannière, J. L. Jansens, P. Goldschmidt-Clermont, L. Barvais, P. Decroly, and E. Stoupel, “Combination of minimally invasive coronary bypass and percutaneous transluminal coronary angioplasty in the treatment of double-vessel coronary disease: two-year follow-up of a new hybrid procedure compared with "on-pump" double bypass grafting,” American Heart Journal, vol. 142, no. 4, pp. 563–570, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Katz, F. van Praet, D. de Canniere et al., “Integrated coronary revascularization: percutaneous coronary intervention plus robotic totally endoscopic coronary artery bypass,” Circulation, vol. 114, no. 1, pp. I473–I476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Kiaii, R. S. McClure, P. Stewart et al. et al., “Simultaneous integrated coronary artery revascularization with long-term angiographic follow-up,” The Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 3, pp. 702–708, 2008. View at Google Scholar
  15. C. Indolfi, M. Pavia, and I. F. Angelillo, “Drug-eluting stents versus bare metal stents in percutaneous coronary interventions (a meta-analysis),” American Journal of Cardiology, vol. 95, no. 10, pp. 1146–1152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Reicher, R. S. Poston, M. R. Mehra et al., “Simultaneous "hybrid" percutaneous coronary intervention and minimally invasive surgical bypass grafting: feasibility, safety, and clinical outcomes,” American Heart Journal, vol. 155, no. 4, pp. 661–667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Zenati, H. A. Cohen, and B. P. Griffith, “Alternative approach to multivessel coronary disease with integrated coronary revascularization,” Journal of Thoracic and Cardiovascular Surgery, vol. 117, no. 3, pp. 439–446, 1999. View at Google Scholar · View at Scopus
  18. C. T. Lloyd, A. M. Calafiore, P. Wilde et al., “Integrated left anterior small thoracotomy and angioplasty for coronary artery revascularization,” Annals of Thoracic Surgery, vol. 68, no. 3, pp. 908–912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Wittwer, A. Haverich, J. Cremer, P. Boonstra, U. Franke, and T. Wahlers, “Follow-up experience with coronary hybrid-revascularisation,” Thoracic and Cardiovascular Surgeon, vol. 48, no. 6, pp. 356–359, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. F. C. Riess, R. Bader, P. Kremer et al., “Coronary hybrid revascularization from January 1997 to January 2001: a clinical follow-up,” Annals of Thoracic Surgery, vol. 73, no. 6, pp. 1849–1855, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. D. Stahl, W. D. Boyd, T. A. Vassiliades, and H. L. Karamanoukian, “Hybrid robotic coronary artery surgery and angioplasty in multivessel coronary artery disease,” Annals of Thoracic Surgery, vol. 74, no. 4, pp. S1358–S1362, 2002. View at Google Scholar · View at Scopus
  22. M. Cisowski, W. Morawski, J. Drzewiecki et al., “Integrated minimally invasive direct coronary artery bypass grafting and angioplasty for coronary artery revascularization,” European Journal of Cardio-Thoracic Surgery, vol. 22, no. 2, pp. 261–265, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. H. Us, M. Basaran, M. Yilmaz et al., “Hybrid coronary revascularization in high-risk patients,” Texas Heart Institute Journal, vol. 33, no. 4, pp. 458–462, 2006. View at Google Scholar · View at Scopus
  24. D. M. Holzhey, S. Jacobs, M. Mochalski et al., “Minimally invasive hybrid coronary artery revascularization,” Annals of Thoracic Surgery, vol. 86, no. 6, pp. 1856–1860, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. D. X. Zhao, M. Leacche, J. M. Balaguer et al., “Routine intraoperative completion angiography after coronary artery bypass grafting and 1-stop hybrid revascularization results from a fully integrated hybrid catheterization laboratory/operating room,” Journal of the American College of Cardiology, vol. 53, no. 3, pp. 232–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Delhaye, A. Sudre, G. Lemesle et al., “Hybrid revascularization, comprising coronary artery bypass graft with exclusive arterial conduits followed by early drug-eluting stent implantation, in multivessel coronary artery disease,” Archives of Cardiovascular Diseases, vol. 103, no. 10, pp. 502–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. E. Halkos, T. A. Vassiliades, J. S. Douglas et al., “Hybrid coronary revascularization versus off-pump coronary artery bypass grafting for the treatment of multivessel coronary artery disease,” The Annals of Thoracic Surgery, vol. 92, no. 5, pp. 1695–1701, 2011. View at Publisher · View at Google Scholar
  28. S. Hu, Q. Li, P. Gao et al., “Simultaneous hybrid revascularization versus off-pump coronary artery bypass for multivessel coronary artery disease,” Annals of Thoracic Surgery, vol. 91, no. 2, pp. 432–438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Wittwer, J. Cremer, P. Boonstra et al., “Myocardial "hybrid" revascularisation with minimally invasive direct coronary artery bypass grafting: combined with coronary angioplasty: preliminary results of a multicentre study,” Heart, vol. 83, no. 1, pp. 58–63, 2000. View at Google Scholar · View at Scopus
  30. C. Loubeyre, M. C. Morice, B. Berzin et al. et al., “Emergency coronary artery bypass surgery following coronary angioplasty and stenting: results of a French multicenter registry,” Catheterization and Cardiovascular Interventions, vol. 47, no. 4, pp. 441–448, 1999. View at Publisher · View at Google Scholar
  31. J. A. Carey, S. W. Davies, R. Balcon et al., “Emergency surgical revascularisation for coronary angioplasty complications,” British Heart Journal, vol. 72, no. 5, pp. 428–435, 1994. View at Google Scholar · View at Scopus
  32. M. A. Greene, L. A. Gray Jr., A. D. Slater, B. L. Ganzel, and C. Mavroudis, “Emergency aortocoronary bypass after failed angioplasty,” Annals of Thoracic Surgery, vol. 51, no. 2, pp. 194–199, 1991. View at Google Scholar · View at Scopus
  33. F. Bednar, P. Osmancik, T. Vanek et al., “Platelet activity and aspirin efficacy after off-pump compared with on-pump coronary artery bypass surgery: results from the prospective randomized trial PRAGUE 11-Coronary Artery Bypass and REactivity of Thrombocytes (CABARET),” Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 4, pp. 1054–1060, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Gao, H. Xiong, Z. Zheng, L. Li, R. Gao, and S. S. Hu, “Evaluation of antiplatelet effects of a modified protocol by platelet aggregation in patients undergoing "one-stop" hybrid coronary revascularization,” Platelets, vol. 21, no. 3, pp. 183–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Bonatti, T. Schachner, N. Bonaros et al., “Simultaneous hybrid coronary revascularization using totally endoscopic left internal mammary artery bypass grafting and placement of rapamycin eluting stents in the same interventional session. The COMBINATION pilot study,” Cardiology, vol. 110, no. 2, pp. 92–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Bonatti, T. Schachner, N. Bonaros et al., “Robotic totally endoscopic coronary artery bypass and catheter based coronary intervention in one operative session,” Annals of Thoracic Surgery, vol. 79, no. 6, pp. 2138–2141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Gao, M. Yang, Y. Wu et al., “Hybrid coronary revascularization by endoscopic robotic coronary artery bypass grafting on beating heart and stent placement,” Annals of Thoracic Surgery, vol. 87, no. 3, pp. 737–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Srivastava, S. Gadasalli, M. Agusala et al., “Beating heart totally endoscopic coronary artery bypass,” Annals of Thoracic Surgery, vol. 89, no. 6, pp. 1873–1880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Onuma and P. W. Serruys, “Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization?” Circulation, vol. 123, no. 7, pp. 779–797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Zembala, M. Tajstra, M. Zembala et al., “Prospective randomised pilOt study evaLuating the safety and efficacy of hybrid revascularisation in MultI-vessel coronary artery DisEaSe (POLMIDES)—study design,” Kardiologia Polska, vol. 69, no. 5, pp. 460–466, 2011. View at Google Scholar · View at Scopus