Mobile Information Systems

Mobile Information Systems / 2008 / Article

Open Access

Volume 4 |Article ID 871712 | 23 pages |

Adaptive and Fuzzy Approaches for Nodes Affinity Management in Wireless Ad-Hoc Networks

Received24 Dec 2008
Accepted24 Dec 2008


In most of the ad-hoc routing protocols, a static link lifetime (LL) is used for a newly discovered neighbors. Though this works well for networks with fixed infrastructures, it is inadequate for ad-hoc networks due to nodes mobility and frequent breaks of links. To overcome this problem, routing protocols with estimated LL using nodes affinity were introduced. However, these protocols also used the static estimated LL during the connection time. In contrast to that, in this paper two methods are presented to estimate LL based on nodes affinity and then continually update those values depending on changes of the affinity. In the first method, linear function is used to map the relationship between the signal strength fluctuation and LL. In the second method, fuzzy logic system is used to map this relationship in a nonlinear fashion. Significance of the proposed methods is validated using simulation. Results indicate that fuzzy method provides the most efficient and robust LL values for routing protocols.

Copyright © 2008 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

286 Views | 1031 Downloads | 6 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.