Mathematical Problems in Engineering

Mathematical Problems in Engineering / 1996 / Article

Open Access

Volume 2 |Article ID 129386 | https://doi.org/10.1155/S1024123X96000324

R. Khoie, "A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part I: The Boltzmann-Poisson-Schrödinger solver", Mathematical Problems in Engineering, vol. 2, Article ID 129386, 14 pages, 1996. https://doi.org/10.1155/S1024123X96000324

A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part I: The Boltzmann-Poisson-Schrödinger solver

Received24 Mar 1995

Abstract

A self-consistent Boltzmann-Poisson-Schrödinger solver for High Electron Mobility Transistor is presented. The quantization of electrons in the quantum well normal to the heterojunction is taken into account by solving the two higher moments of Boltzmann equation along with the Schrödinger and Poisson equations, self-consistently. The Boltzmann transport equation in the form of a current continuity equation and an energy balance equation are solved to obtain the transient and steady-state transport behavior. The numerical instability problems associated with the simulator are presented, and the criteria for smooth convergence of the solutions are discussed. The current-voltage characteristics, transconductance, gate capacitance, and unity-gain frequency of a single quantum well HEMT is discussed. It has been found that a HEMT device with a gate length of 0.7 μm, and with a gate bias voltage of 0.625 V, has a transconductance of 579.2 mS/mm, which together with the gate capacitance of 19.28 pF/cm, can operate at a maximum unity-gain frequency of 47.8 GHz.

Copyright © 1996 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views188
Downloads360
Citations

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.