Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2006 (2006), Article ID 43681, 28 pages
http://dx.doi.org/10.1155/MPE/2006/43681

Lyapunov-Schmidt method dedicated to the observer analysis and design

1Département de Mathématique et d'Informatique, Institut de Mathèmatique, Université Abou Bekr Belkaid Tlemcen, BP 119, Tlemcen 13000, Algeria
2Equipe Commande des Systèmes (ECS)-EA 3649, ENSEA, 6 Avenue du Ponceau, Cergy-Pontoise Paris 95014, France

Received 14 June 2005; Revised 14 February 2006; Accepted 5 March 2006

Copyright © 2006 D. Benmerzouk and J. P. Barbot. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Abed, H. O. Wang, and A. Tesi, “Control of bifurcation and Chaos,” in The Control Handbook, W. S. Levine, Ed., CRC Press, Florida; IEEE Press, New Jersey, 1995. View at Google Scholar
  2. V. I. Arnold, V. S. Afraimovitch, Yu. Ilyashenko, and L. P. Shilnikov, Theory of Bifurcations, vol. 5 of Encyclopedia of Mathematics, Springer, New York, 1982.
  3. D. Benmerzouk and J. P. Barbot, “Observability analysis using Lyapunov-Schmidt method,” in Proceedings of Symposium on Nonlinear Control Systems, vol. 1, pp. 323–328, Stuttgart, 2004. View at Google Scholar
  4. L. Boutat-Baddas, D. Boutat, J. P. Barbot, and R. Tauleigne, “Quadratic observability normal form, part I,” in Proceedings of 40th IEEE Conference on Decision and Control, pp. 2942–2947, Florida, 2001. View at Google Scholar
  5. M. Demazure, Bifurcation and Catastrophes, Geometry of Solution of Nonlinear Problem, Springer, New York, 1991.
  6. W. Kang, “Bifurcation and normal form of nonlinear control systems. I,” SIAM Journal on Control and Optimization, vol. 36, no. 1, pp. 193–212, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. W. Kang, “Bifurcation and normal form of nonlinear control systems. II,” SIAM Journal on Control and Optimization, vol. 36, no. 1, pp. 213–232, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. W. Kang and A. J. Krener, “Extended quadratic controller normal form and dynamic state feedback linearization of nonlinear systems,” SIAM Journal on Control and Optimization, vol. 30, no. 6, pp. 1319–1337, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. H. K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, 2nd edition, 1996.
  10. J. E. Marsden, “Qualitative methods in bifurcation theory,” Bulletin of the American Mathematical Society, vol. 84, no. 6, pp. 1125–1148, 1978. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. J.-C. Paumier, Bifurcations et Méthodes Numériques, Recherches en Mathématiques Appliquées, Masson, Paris, 1997. View at Zentralblatt MATH · View at MathSciNet
  12. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2 of Texts in Applied Mathematics, Springer, New York, 1990. View at Zentralblatt MATH · View at MathSciNet