Abstract

The remarkable properties of shape memory alloys have facilitated their applications in many areas of technology. The purpose of this paper is to present an overview of thermomechanical behavior of these alloys, discussing the main constitutive models for their mathematical description. Metallurgical features and engineering applications are addressed as an introduction. Afterwards, five phenomenological theories are presented. In general, these models capture the general thermomechanical behavior of shape memory alloys, characterized by pseudoelasticity, shape memory effect, phase transformation phenomenon due to temperature variation, and internal subloops due to incomplete phase transformations.