Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2006, Article ID 80705, 19 pages
http://dx.doi.org/10.1155/MPE/2006/80705

Autoparametric vibrations of a nonlinear system with pendulum

Department of Applied Mechanics, Lublin University of Technology, Nadbystrzycka 36, Lublin 20-618 , Poland

Received 31 December 2004; Revised 18 May 2005; Accepted 11 July 2005

Copyright © 2006 J. Warminski and K. Kecik. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Acheson, “A pendulum theorem,” Proceedings of the Royal Society of London. Series A, vol. 443, no. 1917, pp. 239–245, 1993. View at Google Scholar · View at Zentralblatt MATH
  2. A. K. Bajaj, S. I. Chang, and J. M. Johnson, “Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system,” Nonlinear Dynamics, vol. 5, pp. 433–457, 1994. View at Google Scholar
  3. M. P. Cartmell and J. W. Roberts, “Simultaneous combination resonances in an autoparametrically resonant system,” Journal of Sound and Vibration, vol. 123, no. 1, pp. 81–101, 1988. View at Google Scholar · View at MathSciNet
  4. W. K. Lee and C. S. Hsu, “A global analysis of an harmonically excited spring-pendulum system with internal resonance,” Journal of Sound and Vibration, vol. 171, no. 3, pp. 335–359, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, vol. 101 of Applied Mathematical Sciences, Springer, New York, 1994. View at Zentralblatt MATH · View at MathSciNet
  6. D. Sado, Energy Transfer in Nonlinearly Coupled Systems with Two Degrees of Freedom (Przenoszenie energii w nieliniowo sprzężonych układach o dwóch stopniach swobody), Prace Naukowe, Mechanika, z.\textbf{166}, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1997 (in Polish).
  7. Y. Song, H. Sato, Y. Iwata, and T. Komatsuzaki, “The response of a dynamic vibration absorber system with a parametrically excited pendulum,” Journal of Sound and Vibration, vol. 259, no. 4, pp. 747–759, 2003. View at Publisher · View at Google Scholar
  8. A. Tondl, T. Ruijgrok, F. Verhulst, and R. Nabergoj, Autoparametric Resonance in Mechanical Systems, Cambridge University Press, Cambridge, 2000. View at Zentralblatt MATH · View at MathSciNet
  9. F. Verhulst, “Autoparametric resonance, survey and new results,” in 2nd European Nonlinear Oscillation Conference (Prague, 1996), vol. 1, pp. 483–488, European Mechanics Society, 1996. View at Google Scholar
  10. A. Vyas and A. K. Bajaj, “Dynamics of autoparametric vibration absorbers using multiple pendulums,” Journal of Sound and Vibration, vol. 246, no. 1, pp. 115–135, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  11. J. Warminski, J. M. Balthazar, and R. M. L. R. F. Brasil, “Vibrations of a non-ideal parametrically and self-excited model,” Journal of Sound and Vibration, vol. 245, no. 2, pp. 363–374, 2001. View at Publisher · View at Google Scholar