`Mathematical Problems in EngineeringVolume 2008, Article ID 786520, 15 pageshttp://dx.doi.org/10.1155/2008/786520`
Research Article

## Constrained and Unconstrained Optimization Formulations for Structural Elements in Unilateral Contact with an Elastic Foundation

1Department of Civil Engineering, School of Mines, Federal University of Ouro Preto, Campus Universitário, Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brazil
2Department of Civil Engineering, Catholic University, PUC-Rio, Rua Marquês de São Vicente 225, Gávea, Rio de Janeiro, RJ 22451-900, Brazil

Received 9 February 2007; Accepted 18 October 2007

Copyright © 2008 Ricardo A. M. Silveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. H. J. C. Barbosa, Numerical algorithms for contact problems in elasticity, D.Sc. Thesis.
2. R. A. M. Silveira, Analysis of slender structural elements under unilateral contact constraints, D.Sc. Thesis.
3. J. T. Stadter and R. O. Weiss, “Analysis of contact through finite element gaps,” Computers & Structures , vol. 10, no. 6, pp. 867–873, 1979.
4. N. Adan, I. Sheinman, and E. Altus, “Post-buckling behavior of beams under contact constraints,” Journal of Applied Mechanics, vol. 61, no. 4, pp. 764–772, 1994.
5. P. Holmes, G. Domokos, J. Schmitt, and I. Szeberényi, “Constrained Euler buckling: an interplay of computation and analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 170, no. 3-4, pp. 175–207, 1999.
6. R. A. M. Silveira and P. B. Gonçalves, “A modal nonlinear solution for structural elements under contact constraints imposed by elastic foundations,” in Proceedings of the 5th International Conference on Computational Methods and Contact Mechanics, Contact Mechanics (CON '01), J. Domínguez and C. A. Brebbia, Eds., vol. 5, pp. 197–206, Seville, Spain, June 2001.
7. J. Li and E. J. Berger, “A semi-analytical approach to three-dimensional normal contact problems with friction,” Computational Mechanics, vol. 30, no. 4, pp. 310–322, 2003.
8. P. Wriggers and M. Imhof, “On the treatment of nonlinear unilateral contact problems,” Archive of Applied Mechanics, vol. 63, no. 2, pp. 116–129, 1993.
9. P. D. Panagiotopoulos, “A nonlinear programming approach to the unilateral contact-, and friction-boundary value problem in the theory of elasticity,” Archive of Applied Mechanics, vol. 44, no. 6, pp. 421–432, 1975.
10. D. Talaslidis and P. D. Panagiotopoulos, “A linear finite element approach to the solution of the variational inequalities arising in contact problems of structural dynamics,” International Journal for Numerical Methods in Engineering, vol. 18, no. 10, pp. 1505–1520, 1982.
11. P. D. Panagiotopoulos and P. P. Lazaridis, “Boundary minimum principles for the unilateral contact problems,” International Journal of Solids and Structures, vol. 23, no. 11, pp. 1465–1484, 1987.
12. G. E. Stavroulakis, P. D. Panagiotopoulos, and A. M. Al-Fahed, “On the rigid body displacements and rotations in unilateral contact problems and applications,” Computers & Structures, vol. 40, no. 3, pp. 599–614, 1991.
13. R. W. Cottle and G. B. Dantzig, “Complementary pivot theory of mathematical programming,” Linear Algebra and Its Applications, vol. 1, no. 1, pp. 103–125, 1968.
14. C. E. Lemke, “On complementary pivot theory,” in Mathematics of Decision Sciences, G. B. Dantzig and A. F. Yenott, Eds., pp. 95–114, American Mathematical Society, Providence, RI, USA, 1968.
15. L. Ascione and A. Grimaldi, “Unilateral contact between a plate and an elastic foundation,” Meccanica, vol. 19, no. 3, pp. 223–233, 1984.
16. A. R. D. Silva, Analysis of plates under contact constraints, M.Sc. Thesis.
17. A. R. D. Silva, R. A. M. Silveira, and P. B. Gonçalves, “Numerical methods for analysis of plates on tensionless elastic foundations,” International Journal of Solids and Structures, vol. 38, no. 10–13, pp. 2083–2100, 2001.
18. E. Stein and P. Wriggers, “Stability of rods with unilateral constraints, a finite element solution,” Computers & Structures, vol. 19, no. 1-2, pp. 205–211, 1984.
19. J. C. Simo, P. Wriggers, K. H. Schweizerhof, and R. L. Taylor, “Finite deformation post-buckling analysis involving inelasticity and contact constraints,” International Journal for Numerical Methods in Engineering, vol. 23, no. 5, pp. 779–800, 1986.
20. M. A. Crisfield, Non-Linear Finite Element Analysis of Solids and Structures, vol. 1, John Wiley & Sons, West Sussex, UK, 1991.
21. P. Wriggers, W. Wagner, and E. Stein, “Algorithms for non-linear contact constraints with application to stability problems of rods and shells,” Computational Mechanics, vol. 2, no. 3, pp. 215–230, 1987.
22. J. S. Koo and B. M. Kwak, “Post-buckling analysis with frictional contacts combining complementarity relations and an arc-length method,” International Journal for Numerical Methods in Engineering, vol. 39, no. 7, pp. 1161–1180, 1996.
23. R. A. M. Silveira and P. B. Gonçalves, “Analysis of slender structural elements under unilateral contact constraints,” Structural Engineering & Mechanics, vol. 12, no. 1, pp. 35–50, 2001.
24. J. R. Barber and M. Ciavarella, “Contact mechanics,” International Journal of Solids and Structures, vol. 37, no. 1-2, pp. 29–43, 1999.
25. P. Wriggers, Computational Contact Mechanics, John Wiley & Sons, West Sussex, UK, 2002.
26. R. Fletcher, Practical Methods of Optimization. Vol. 2: Constrained Optimization, John Wiley & Sons, Chichester, UK, 1981.
27. A. C. Walker, “A non-linear finite element analysis of shallow circular arches,” International Journal of Solids and Structures, vol. 5, no. 2, pp. 97–107, 1969.