Abstract

This paper is concerned about the existence of extreme solutions of multipoint boundary value problem for a class of second-order impulsive functional differential equations. We introduce a new concept of lower and upper solutions. Then, by using the method of upper and lower solutions introduced and monotone iterative technique, we obtain the existence results of extreme solutions.

1. Introduction

In this paper, we consider the multipoint boundary value problems for the impulsive functional differential equation: โˆ’๐‘ข๎…ž๎…ž[](๐‘ก)=๐‘“(๐‘ก,๐‘ข(๐‘ก),๐‘ข(๐œƒ(๐‘ก))),๐‘กโˆˆ๐ฝ=0,1,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ=๐ผ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ธ,๐‘˜=1,โ€ฆ,๐‘š,๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)=๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)=๐‘‘๐‘ข(๐œ‰),(1.1) where ๐‘“โˆˆ๐ถ(๐ฝร—๐‘2,๐‘), โ€‰โ€‰ 0โ‰ค๐œƒ(๐‘ก)โ‰ค๐‘ก,๐‘กโˆˆ๐ฝ,๐œƒโˆˆ๐ถ(๐ฝ),๐‘Žโ‰ฅ0,๐‘โ‰ฅ0,0โ‰ค๐‘โ‰ค1,0โ‰ค๐‘‘โ‰ค1, 0<๐œ‚,๐œ‰<1. 0<๐‘ก1<๐‘ก2<โ‹ฏ<๐‘ก๐‘š<1, ๐‘“ is continuous everywhere except at {๐‘ก๐‘˜}ร—๐‘…2; ๐‘“(๐‘ก+๐‘˜,โ‹…,โ‹…), and ๐‘“(๐‘กโˆ’๐‘˜,โ‹…,โ‹…) exist with ๐‘“(๐‘กโˆ’๐‘˜,โ‹…,โ‹…)=๐‘“(๐‘ก๐‘˜,โ‹…,โ‹…); ๐ผ๐‘˜โˆˆ๐ถ(๐‘…,๐‘…),ฮ”๐‘ข๎…ž(๐‘ก๐‘˜)=๐‘ข๎…ž(๐‘ก+๐‘˜)โˆ’๐‘ข๎…ž(๐‘กโˆ’๐‘˜). Denote ๐ฝโˆ’=๐ฝโงต{๐‘ก๐‘–,๐‘–=1,2,โ€ฆ,๐‘š}. Let ๐‘ƒ๐ถ(๐ฝ,๐‘…)={๐‘ขโˆถ๐ฝโ†’๐‘…;๐‘ข(๐‘ก)|๐ฝโˆ’ is continuous, ๐‘ข(๐‘ก+๐‘˜) and ๐‘ข(๐‘กโˆ’๐‘˜) exist with ๐‘ข(๐‘กโˆ’๐‘˜)=๐‘ข(๐‘ก๐‘˜),๐‘˜=1,2,โ€ฆ,๐‘š}; ๐‘ƒ๐ถ1(๐ฝ,๐‘…)={๐‘ขโˆถ๐ฝโ†’๐‘…;๐‘ข(๐‘ก)|๐ฝโˆ’ is continuous differentiable, ๐‘ข๎…ž(๐‘ก+๐‘˜) and ๐‘ข๎…ž(๐‘กโˆ’๐‘˜) exist with ๐‘ข๎…ž(๐‘กโˆ’๐‘˜)=๐‘ข๎…ž(๐‘ก๐‘˜),๐‘˜=1,2,โ€ฆ,๐‘š}. Let ๐ธ=๐‘ƒ๐ถ1(๐ฝ,๐‘…)โˆฉ๐ถ2(๐ฝ,๐‘…). A function ๐‘ขโˆˆ๐ธ is called a solution of BVP(1.1) if it satisfies (1.1).

The method of upper and lower solutions combining monotone iterative technique offers an approach for obtaining approximate solutions of nonlinear differential equations [1โ€“3]. There exist much literature devoted to the applications of this technique to general boundary value problems and periodic boundary value problems, for example, see [1, 4โ€“6] for ordinary differential equations, [7โ€“11] for functional differential equations, and [12] for differential equations with piecewise constant arguments. For the studies about some special boundary value problems, for example, Lidston boundary value problems and antiperiodic boundary value problems, one may see [13, 14] and the references cited therein.

Here, we hope to mention some papers where existence results of solutions of certain boundary value problems of impulsive differential equations were studied [11, 15] and certain multipoint boundary value problems also were studied [6, 16โ€“21]. These works motivate that we study the multipoint boundary value problems for the impulsive functional differential equation (1.1).

We also note that when ๐ผ๐‘˜=0 and ๐œƒ(๐‘ก)=๐‘ก, the boundary value problem (1.1) reduces to multi-point boundary value problems for ordinary differential equations which have been studied in many papers, see, for example, [6, 16โ€“18] and the references cited therein. To our knowledge, only a few papers paid attention to multi-point boundary value problems for impulsive functional differential equations.

In this paper, we are concerned with the existence of extreme solutions for the boundary value problem (1.1). The paper is organized as follows. In Section 2, we establish two comparison principles. In Section 3, we consider a linear problem associated to (1.1) and then give a proof for the existence theorem. In Section 4, we first introduce a new concept of lower and upper solutions. By using the method of upper and lower solutions with a monotone iterative technique, we obtain the existence of extreme solutions for the boundary value problem (1.1).

2. Comparison Principles

In the following, we always assume that the following condition (๐ป) is satisfied:

(๐ป)โ€ƒ ๐‘Žโ‰ฅ0,๐‘โ‰ฅ0,0โ‰ค๐‘โ‰ค1,0โ‰ค๐‘‘โ‰ค1,0<๐œ‚,๐œ‰<1,๐‘Ž+๐‘>0,๐‘+๐‘‘>0.

For any given function ๐‘”โˆˆ๐ธ, we denote ๐ด๐‘”๎‚ป=max๐‘”(0)โˆ’๐‘Ž๐‘”๎…ž(0)โˆ’๐‘๐‘”(๐œ‚),๐‘Ž๐œ‹+๐‘sin๐œ‹๐œ‚๐‘”(1)+๐‘๐‘”๎…ž(1)โˆ’๐‘‘๐‘”(๐œ‰)๎‚ผ,๐ต๐‘๐œ‹+๐‘‘sin๐œ‹๐œ‰๐‘”๎€ฝ๐ด=max๐‘”๎€พ,0,๐‘๐‘”(๐‘ก)=๐ต๐‘”sin(๐œ‹๐‘ก),๐‘Ÿ=๐œ‹2.(2.1) We now present main results of this section.

Theorem 2.1. Assume thatโ€‰โ€‰๐‘ขโˆˆ๐ธ satisfies โˆ’๐‘ข๎…ž๎…ž(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))โ‰ค0,๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š,๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)โ‰ค๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)โ‰ค๐‘‘๐‘ข(๐œ‰),(2.2) where ๐‘Žโ‰ฅ0,๐‘โ‰ฅ0, 0โ‰ค๐‘โ‰ค1,0โ‰ค๐‘‘โ‰ค1,0<๐œ‚, โ€‰๐œ‰<1, ๐ฟ๐‘˜โ‰ฅ0 and constants ๐‘€,๐‘ satisfy ๐‘€>0,๐‘โ‰ฅ0,๐‘€+๐‘2+๐‘š๎“๐‘˜=1๐ฟ๐‘˜โ‰ค1.(2.3) Then ๐‘ข(๐‘ก)โ‰ค0 for ๐‘กโˆˆ๐ฝ.

Proof. Suppose, to the contrary, that ๐‘ข(๐‘ก)>0 for some ๐‘กโˆˆ๐ฝ.
If ๐‘ข(1)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0, then ๐‘ข๎…ž(1)โ‰ฅ0, ๐‘ข(1)โ‰ฅ๐‘ข(๐œ‰), and ๐‘‘๐‘ข(๐œ‰)โ‰ค๐‘ข(1)โ‰ค๐‘ข(1)+๐‘๐‘ข๎…ž(1)โ‰ค๐‘‘๐‘ข(๐œ‰).(2.4) So ๐‘‘=1 and ๐‘ข(๐œ‰) is a maximum value.
If ๐‘ข(0)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0, then ๐‘ข๎…ž(0)โ‰ค0, ๐‘ข(0)โ‰ฅ๐‘ข(๐œ‚), and ๐‘๐‘ข(๐œ‚)โ‰ค๐‘ข(0)โ‰ค๐‘ข(0)โˆ’๐‘๐‘ข๎…ž(0)โ‰ค๐‘๐‘ข(๐œ‚).(2.5) So ๐‘=1 and ๐‘ข(๐œ‚) is a maximum value.
Therefore, there is a ๐œŒโˆˆ(0,1) such that ๐‘ข(๐œŒ)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0,๐‘ข๎…ž๎€ท๐œŒ+๎€ธโ‰ค0.(2.6)
Suppose that ๐‘ข(๐‘ก)โ‰ฅ0 for ๐‘กโˆˆ๐ฝ. From the first inequality of (2.2), we obtain that ๐‘ข๎…ž๎…ž(๐‘ก)โ‰ฅ0 for ๐‘กโˆˆ๐ฝ. Hence ๐‘ข(0)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)or๐‘ข(1)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก).(2.7)
If ๐‘ข๎…ž(0)โ‰ฅ0, then ๐‘ข๎…ž๎…ž(๐‘ก)โ‰ฅ0, ๐‘กโˆˆ(๐‘ก๐‘–,๐‘ก๐‘–+1], it is easy to obtain that ๐‘ข(๐‘ก) is nondecreasing. Since ๐‘ข(1)โ‰ค๐‘‘๐‘ข(๐œ‰)โ‰ค๐‘ข(1), it follows that ๐‘ข(๐‘ก)โ‰ก๐พ (๐พ>0) for ๐‘กโˆˆ[๐œ‰,1]. From the first inequality of (2.2), we have that when ๐‘กโˆˆ[๐œ‰,1],0<๐‘€๐พโ‰ค๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))โ‰ค๐‘ข๎…ž๎…ž(๐‘ก)=0,(2.8) which is a contradiction.
If ๐‘ข๎…ž(0)โ‰ค0, then ๐‘ข(0)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0, or ๐‘ข(1)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0. If ๐‘ข(0)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0, then ๐‘ข(๐‘ก)โ‰ก๐พ (๐พ>0) for ๐‘กโˆˆ[0,๐œ‚]. If ๐‘ข(1)=max๐‘กโˆˆ๐ฝ๐‘ข(๐‘ก)>0, then ๐‘ข(๐‘ก)โ‰ก๐พ for ๐‘กโˆˆ[๐œ‰,1].
From the first inequality of (2.2), we have that when ๐‘กโˆˆ[๐œ‰,1],0<๐‘€๐พโ‰ค๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))โ‰ค๐‘ข๎…ž๎…ž(๐‘ก)=0,(2.9) which is a contradiction.
Suppose that there exist ๐‘ก1,๐‘ก2โˆˆ๐ฝ such that ๐‘ข(๐‘ก1)>0 and ๐‘ข(๐‘ก2)<0. We consider two possible cases.Case 1 (๐‘ข(0)>0). Since ๐‘ข(๐‘ก2)<0, there is ๐œ…>0,๐œ€>0 such that ๐‘ข(๐œ…)=0, ๐‘ข(๐‘ก)โ‰ฅ0 for ๐‘กโˆˆ[0,๐œ…) and ๐‘ข(๐‘ก)<0 for all ๐‘กโˆˆ(๐œ…,๐œ…+๐œ€]. It is easy to obtain that ๐‘ข๎…ž๎…ž(๐‘ก)โ‰ฅ0 for ๐‘กโˆˆ[0,๐œ…]. If ๐‘กโˆ—<๐œ…, then 0<๐‘€๐‘ข(๐‘กโˆ—)โ‰ค๐‘ข๎…ž๎…ž(๐‘กโˆ—)โ‰ค0, a contradiction. Hence ๐‘กโˆ—>๐œ…+๐œ€. Let ๐‘กโˆ—โˆˆ[0,๐‘กโˆ—) such that ๐‘ข(๐‘กโˆ—)=min๐‘กโˆˆ[0,๐‘กโˆ—)๐‘ข(๐‘ก), then ๐‘ข(๐‘กโˆ—)<0. From the first inequality of (2.2), we have ๐‘ข๎…ž๎…ž๎€ท๐‘ก(๐‘ก)โ‰ฅ(๐‘€+๐‘)๐‘ขโˆ—๎€ธ๎€บ,๐‘กโˆˆ0,๐‘กโˆ—๎€ธ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š.(2.10) Integrating the above inequality from ๐‘ (๐‘กโˆ—โ‰ค๐‘ โ‰ค๐‘กโˆ—) to ๐‘กโˆ—, we obtain ๐‘ข๎…ž๎€ท๐‘กโˆ—๎€ธโˆ’๐‘ข๎…ž(๎€ท๐‘ก๐‘ )โ‰ฅโˆ—๎€ธ(๎€ท๐‘กโˆ’๐‘ ๐‘€+๐‘)๐‘ขโˆ—๎€ธ+๎“๐‘ <๐‘ก๐‘˜<๐‘กโˆ—๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๎€ท๐‘กโˆ—๎€ธ๎€ท๐‘กโˆ’๐‘ (๐‘€+๐‘)๐‘ขโˆ—๎€ธ+๐‘š๎“๐‘˜=1๐ฟ๐‘˜๐‘ข๎€ท๐‘กโˆ—๎€ธ.(2.11) Hence โˆ’๐‘ข๎…ž[๎€ท๐‘ก(๐‘ )โ‰ฅโˆ—๎€ธโˆ’๐‘ (๐‘€+๐‘)+๐‘š๎“๐‘˜=1๐ฟ๐‘˜๐‘ข๎€ท๐‘กโˆ—๎€ธ,๐‘กโˆ—โ‰ค๐‘ โ‰ค๐‘กโˆ—,(2.12) and then integrate from ๐‘กโˆ— to ๐‘กโˆ— to obtain ๎€ท๐‘กโˆ’๐‘ขโˆ—๎€ธ๎€ท๐‘ก<๐‘ขโˆ—๎€ธ๎€ท๐‘กโˆ’๐‘ขโˆ—๎€ธโ‰ค๎€œ๐‘กโˆ—๐‘กโˆ—๎€ท๐‘ โˆ’๐‘กโˆ—๎€ธ๎€ท๐‘ก(๐‘€+๐‘)๐‘ขโˆ—๎€ธ๐‘‘๐‘ โˆ’๐‘š๎“๐‘˜=1๐ฟ๐‘˜๐‘ข๎€ท๐‘กโˆ—๎€ธ๎ƒฉโ‰คโˆ’๐‘€+๐‘2๎€ท๐‘กโˆ—โˆ’๐‘กโˆ—๎€ธ2+๐‘š๎“๐‘˜=1๐ฟ๐‘˜๎ƒช๐‘ข๎€ท๐‘กโˆ—๎€ธ๎ƒฉโ‰คโˆ’๐‘€+๐‘2+๐‘š๎“๐‘˜=1๐ฟ๐‘˜๎ƒช๐‘ข๎€ท๐‘กโˆ—๎€ธ.(2.13) From (2.3), we have that ๐‘ข(๐‘กโˆ—)>0. This is a contradiction.Case 2 (๐‘ข(0)โ‰ค0). Let ๐‘กโˆ—โˆˆ[0,๐‘กโˆ—) such that ๐‘ข(๐‘กโˆ—)=min๐‘กโˆˆ[0,๐‘กโˆ—)๐‘ข(๐‘ก)โ‰ค0. From the first inequality of (2.2), we have ๐‘ข๎…ž๎…ž๎€ท๐‘ก(๐‘ก)โ‰ฅ(๐‘€+๐‘)๐‘ขโˆ—๎€ธ๎€บ,๐‘กโˆˆ0,๐‘กโˆ—๎€ธ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š.(2.14) The rest proof is similar to that of Case 1. The proof is complete.

Theorem 2.2. Assume that (๐ป) holds and ๐‘ขโˆˆ๐ธ satisfies โˆ’๐‘ข๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐‘ข(๐‘ก)+๐‘๐‘๐‘ข๎€ป(๐œƒ(๐‘ก))โ‰ค0,๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐‘ข๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š,(2.15) where constants ๐‘€,๐‘ satisfy (2.3), and ๐ฟ๐‘˜โ‰ฅ0, then ๐‘ข(๐‘ก)โ‰ค0 for ๐‘กโˆˆ๐ฝ.

Proof. Assume that ๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)โ‰ค๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)โ‰ค๐‘‘๐‘ข(๐œ‰), then ๐‘๐‘ข(๐‘ก)โ‰ก0. By Theorem 2.1, ๐‘ข(๐‘ก)โ‰ค0.
Assume that ๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)โ‰ค๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)>๐‘‘๐‘ข(๐œ‰), then
๐‘๐‘ข(๐‘ก)=sin(๐œ‹๐‘ก)๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž(๎€ธ1)โˆ’๐‘‘๐‘ข(๐œ‰).(2.16)
Put ๐‘ฆ(๐‘ก)=๐‘ข(๐‘ก)+๐‘๐‘ข(๐‘ก),๐‘กโˆˆ๐ฝ, then ๐‘ฆ(๐‘ก)โ‰ฅ๐‘ข(๐‘ก) for all ๐‘กโˆˆ๐ฝ, and
๐‘ฆ๎…ž(๐‘ก)=๐‘ข๎…ž(๐‘ก)+๐œ‹cos(๐œ‹๐‘ก)๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž๎€ธ๐‘ฆ(1)โˆ’๐‘‘๐‘ข(๐œ‰),๐‘กโˆˆ๐ฝ,๎…ž๎…ž(๐‘ก)=๐‘ข๎…ž๎…ž(๐‘ก)โˆ’๐‘Ÿ๐‘๐‘ข(๐‘ก),๐‘กโˆˆ๐ฝ.(2.17) Hence ๐‘ฆ(0)=๐‘ข(0),๐‘ฆ(1)=๐‘ข(1),๐‘ฆ(๐œ‰)=๐‘ข(๐œ‰)+sin(๐œ‹๐œ‰)๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž(๎€ธ,๐‘ฆ1)โˆ’๐‘‘๐‘ข(๐œ‰)๎…ž(0)=๐‘ข๎…ž(๐œ‹0)+๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž(๎€ธ,๐‘ฆ1)โˆ’๐‘‘๐‘ข(๐œ‰)๎…ž(1)=๐‘ข๎…ž(๐œ‹1)โˆ’๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž(๎€ธ,1)โˆ’๐‘‘๐‘ข(๐œ‰)โˆ’๐‘ฆ๎…ž๎…ž(๐‘ก)+๐‘€๐‘ฆ(๐‘ก)+๐‘๐‘ฆ(๐œƒ(๐‘ก))=โˆ’๐‘ข๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐‘ข(๐‘ก)+๐‘๐‘๐‘ข๎€ป(๐œƒ(๐‘ก))โ‰ค0,๐‘ฆ(0)โˆ’๐‘Ž๐‘ฆ๎…ž(0)=๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)โˆ’๐‘Ž๐œ‹๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž๎€ธ(1)โˆ’๐‘‘๐‘ข(๐œ‰)โ‰ค๐‘๐‘ข(๐œ‚)โ‰ค๐‘๐‘ฆ(๐œ‚),๐‘ฆ(1)+๐‘๐‘ฆ๎…ž(1)โˆ’๐‘‘๐‘ฆ(๐œ‰)=๐‘ข(1)+๐‘๐‘ข๎…ž(1)โˆ’๐‘‘๐‘ข(๐œ‰)โˆ’๐‘๐œ‹๎€ท๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰)๐‘ข(1)+๐‘๐‘ข๎…ž๎€ธโˆ’(1)โˆ’๐‘‘๐‘ข(๐œ‰)๐‘‘sin(๐œ‹๐œ‰)๎€ท๐‘๐œ‹+๐‘‘sin๐œ‹๐œ‰๐‘ข(1)+๐‘๐‘ข๎…ž๎€ธ(1)โˆ’๐‘‘๐‘ข(๐œ‰)โ‰ค0,ฮ”๐‘ฆ๎…ž๎€ท๐‘ก๐‘˜๎€ธ=ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธฮ”๐‘๎…ž๐‘ข๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐‘ข๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ฆ๎€ท๐‘ก๐‘˜๎€ธ.(2.18) By Theorem 2.1, ๐‘ฆ(๐‘ก)โ‰ค0 for all ๐‘กโˆˆ๐ฝ, which implies that ๐‘ข(๐‘ก)โ‰ค0 for ๐‘กโˆˆ๐ฝ.
Assume that ๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)>๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)โ‰ค๐‘‘๐‘ข(๐œ‰), then
๐‘๐‘ข(๐‘ก)=sin๐œ‹๐‘ก๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž๎€ธ(0)โˆ’๐‘๐‘ข(๐œ‚).(2.19) Put ๐‘ฆ(๐‘ก)=๐‘ข(๐‘ก)+๐‘๐‘ข(๐‘ก),๐‘กโˆˆ๐ฝ, then ๐‘ฆ(๐‘ก)โ‰ฅ๐‘ข(๐‘ก) for all ๐‘กโˆˆ๐ฝ, and ๐‘ฆ๎…ž(๐‘ก)=๐‘ข๎…ž(๐‘ก)+๐œ‹cos(๐œ‹๐‘ก)๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž๎€ธ๐‘ฆ(0)โˆ’๐‘๐‘ข(๐œ‚),๐‘กโˆˆ๐ฝ,๎…ž๎…ž(๐‘ก)=๐‘ข๎…ž๎…ž(๐‘ก)โˆ’๐‘Ÿ๐‘๐‘ข(๐‘ก),๐‘กโˆˆ๐ฝ.(2.20) Hence ๐‘ฆ(0)=๐‘ข(0),๐‘ฆ(1)=๐‘ข(1),๐‘ฆ(๐œ‚)=๐‘ข(๐œ‚)+sin(๐œ‹๐œ‚)๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(๎€ธ,๐‘ฆ0)โˆ’๐‘๐‘ข(๐œ‚)๎…ž(0)=๐‘ข๎…ž(๐œ‹0)+๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(๎€ธ,๐‘ฆ0)โˆ’๐‘๐‘ข(๐œ‚)๎…ž(1)=๐‘ข๎…ž(๐œ‹1)โˆ’๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(๎€ธ,0)โˆ’๐‘๐‘ข(๐œ‚)โˆ’๐‘ฆ๎…ž๎…ž(๐‘ก)+๐‘€๐‘ฆ(๐‘ก)+๐‘๐‘ฆ(๐œƒ(๐‘ก))=โˆ’๐‘ข๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐‘ข(๐‘ก)+๐‘๐‘๐‘ข๎€ป(๐œƒ(๐‘ก))โ‰ค0,๐‘ฆ(0)โˆ’๐‘Ž๐‘ฆ๎…ž(0)โˆ’๐‘๐‘ฆ(๐œ‚)=๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)โˆ’๐‘๐‘ข(๐œ‚)โˆ’๐‘Ž๐œ‹๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž๎€ธโˆ’(0)โˆ’๐‘๐‘ข(๐œ‚)๐‘sin(๐œ‹๐œ‚)๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(๎€ธ0)โˆ’๐‘๐‘ข(๐œ‚)โ‰ค0,๐‘ฆ(1)+๐‘๐‘ฆ๎…ž(1)=๐‘ข(1)+๐‘๐‘ข๎…ž(1)โˆ’๐‘๐œ‹๎€ท๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚)๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž๎€ธ(0)โˆ’๐‘๐‘ข(๐œ‚)โ‰ค๐‘‘๐‘ข(๐œ‰)โ‰ค๐‘‘๐‘ฆ(๐œ‰),ฮ”๐‘ฆ๎…ž๎€ท๐‘ก๐‘˜๎€ธ=ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ+ฮ”๐‘๎…ž๐‘ข๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐‘ข๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ฆ๎€ท๐‘ก๐‘˜๎€ธ.(2.21)
By Theorem 2.1, ๐‘ฆ(๐‘ก)โ‰ค0 for all ๐‘กโˆˆ๐ฝ, which implies that ๐‘ข(๐‘ก)โ‰ค0 for ๐‘กโˆˆ๐ฝ.
Assume that ๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)>๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)>๐‘‘๐‘ข(๐œ‰), then ๐‘๐‘ข(๐‘ก)=๐ด๐‘ขsin(๐œ‹๐‘ก).
Put ๐‘ฆ(๐‘ก)=๐‘ข(๐‘ก)+๐‘๐‘ข(๐‘ก),๐‘กโˆˆ๐ฝ, then ๐‘ฆ(๐‘ก)โ‰ฅ๐‘ข(๐‘ก) for all ๐‘กโˆˆ๐ฝ, and ๐‘ฆ๎…ž(๐‘ก)=๐‘ข๎…ž(๐‘ก)+๐ด๐‘ข๐‘ฆ๐œ‹cos(๐œ‹๐‘ก),๐‘กโˆˆ๐ฝ,๎…ž๎…ž(๐‘ก)=๐‘ข๎…ž๎…ž(๐‘ก)โˆ’๐‘Ÿ๐‘๐‘ข(๐‘ก),๐‘กโˆˆ๐ฝ.(2.22) Hence ๐‘ฆ๐‘ฆ(0)=๐‘ข(0),๐‘ฆ(1)=๐‘ข(1),(๐œ‚)=๐‘ข(๐œ‚)+๐ด๐‘ขsin(๐œ‹๐œ‚),๐‘ฆ(๐œ‰)=๐‘ข(๐œ‰)+๐ด๐‘ข๐‘ฆsin(๐œ‹๐œ‰),๎…ž(0)=๐‘ข๎…ž(0)+๐ด๐‘ข๐œ‹,๐‘ฆ๎…ž(1)=๐‘ข๎…ž(1)โˆ’๐ด๐‘ข๐œ‹,โˆ’๐‘ฆ๎…ž๎…ž(๐‘ก)+๐‘€๐‘ฆ(๐‘ก)+๐‘๐‘ฆ(๐œƒ(๐‘ก))=โˆ’๐‘ข๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐‘ข(๐‘ก)+๐‘๐‘๐‘ข๎€ป(๐œƒ(๐‘ก))โ‰ค0,๐‘ฆ(0)โˆ’๐‘Ž๐‘ฆ๎…ž(0)โˆ’๐‘๐‘ฆ(๐œ‚)=๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)โˆ’๐‘๐‘ข(๐œ‚)โˆ’๐‘Ž๐ด๐‘ข๐œ‹โˆ’๐‘๐ด๐‘ขsin(๐œ‹๐œ‚)โ‰ค0,๐‘ฆ(1)+๐‘๐‘ฆ๎…ž(1)โˆ’๐‘‘๐‘ฆ(๐œ‰)=๐‘ข(1)+๐‘๐‘ข๎…ž(1)โˆ’๐‘‘๐‘ข(๐œ‰)โˆ’๐‘๐ด๐‘ข๐œ‹โˆ’๐‘‘๐ด๐‘ขsin(๐œ‹๐œ‰)โ‰ค0,ฮ”๐‘ฆ๎…ž๎€ท๐‘ก๐‘˜๎€ธ=ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ+ฮ”๐‘๎…ž๐‘ข๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐‘ข๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ฆ๎€ท๐‘ก๐‘˜๎€ธ.(2.23)
By Theorem 2.1, ๐‘ฆ(๐‘ก)โ‰ค0 for all ๐‘กโˆˆ๐ฝ, which implies that ๐‘ข(๐‘ก)โ‰ค0 for ๐‘กโˆˆ๐ฝ. The proof is complete.

3. Linear Problem

In this section, we consider the linear boundary value problem โˆ’๐‘ข๎…ž๎…ž(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))=๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)=๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)=๐‘‘๐‘ข(๐œ‰).(3.1)

Theorem 3.1. Assume that (๐ป) holds, ๐œŽโˆˆ๐ถ(๐ฝ), ๐‘’๐‘˜โˆˆ๐‘…, and constants ๐‘€,๐‘ satisfy (2.3) with ๎‚ต๐‘Ž๐œ‡=(1+2๐‘)+12(๐‘Ž+๐‘+1)8๎‚€1+2๐‘๎‚๐‘Ž+๐‘+12๎‚ถ๎‚ต(๐‘€+๐‘)+1+(1+๐‘)2๎‚ถ๐‘Ž+๐‘+1๐‘š๎“๐‘˜=1๐ฟ๐‘˜<1.(3.2) Further suppose that there exist ๐›ผ,๐›ฝโˆˆ๐ธ such that (โ„Ž1)๐›ผโ‰ค๐›ฝ on ๐ฝ,(โ„Ž2)โˆ’๐›ผ๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐›ผ(๐‘ก)+๐‘๐›ผ(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐›ผ(๐‘ก)+๐‘๐‘๐›ผ๎€ป(๐œƒ(๐‘ก))โ‰ค๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ผ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐›ผ๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐›ผ๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,(3.3)(โ„Ž3)โˆ’๐›ฝ๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐›ฝ(๐‘ก)+๐‘๐›ฝ(๐œƒ(๐‘ก))โˆ’(๐‘€+๐‘Ÿ)๐‘โˆ’๐›ฝ(๐‘ก)+๐‘๐‘โˆ’๐›ฝ๎€ป(๐œƒ(๐‘ก))โ‰ฅ๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ฝ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ค๐ฟ๐‘˜๐›ฝ๎€ท๐‘ก๐‘˜๎€ธโˆ’๐ฟ๐‘˜๐‘โˆ’๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š.(3.4)Then the boundary value problem (3.1) has one unique solution ๐‘ข(๐‘ก) and ๐›ผโ‰ค๐‘ขโ‰ค๐›ฝ for ๐‘กโˆˆ๐ฝ.

Proof. We first show that the solution of (3.1) is unique. Let ๐‘ข1,๐‘ข2 be the solution of (3.1) and set ๐‘ฃ=๐‘ข1โˆ’๐‘ข2. Thus, โˆ’๐‘ฃ๎…ž๎…ž(๐‘ก)+๐‘€๐‘ฃ(๐‘ก)+๐‘๐‘ฃ(๐œƒ(๐‘ก))=0,๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ฃ๎…ž๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ฃ๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š,๐‘ฃ(0)โˆ’๐‘Ž๐‘ฃ๎…ž(0)=๐‘๐‘ฃ(๐œ‚),๐‘ฃ(1)+๐‘๐‘ฃ๎…ž(1)=๐‘‘๐‘ฃ(๐œ‰).(3.5) By Theorem 2.1, we have that ๐‘ฃโ‰ค0 for ๐‘กโˆˆ๐ฝ, that is, ๐‘ข1โ‰ค๐‘ข2 on ๐ฝ. Similarly, one can obtain that ๐‘ข2โ‰ค๐‘ข1 on ๐ฝ. Hence ๐‘ข1=๐‘ข2.
Next, we prove that if ๐‘ข is a solution of (3.1), then ๐›ผโ‰ค๐‘ขโ‰ค๐›ฝ. Let ๐‘=๐›ผโˆ’๐‘ข. From boundary conditions, we have that ๐‘๐›ผ(๐‘ก)=๐‘๐‘(๐‘ก) for all ๐‘กโˆˆ๐ฝ. From (โ„Ž2) and (3.1), we have
โˆ’๐‘๎…ž๎…ž๎€บ(๐‘ก)+๐‘€๐‘(๐‘ก)+๐‘๐‘(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐‘(๐‘ก)+๐‘๐‘๐‘๎€ป(๐œƒ(๐‘ก))โ‰ค0,๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐‘๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š.(3.6) By Theorem 2.1, we have that ๐‘=๐›ผโˆ’๐‘ขโ‰ค0 on ๐ฝ. Analogously, ๐‘ขโ‰ค๐›ฝ on ๐ฝ.
Finally, we show that the boundary value problem (3.1) has a solution by five steps as follows.
Step 1. Let ๐›ผ(๐‘ก)=๐›ผ(๐‘ก)+๐‘๐›ผ(๐‘ก),๐›ฝ(๐‘ก)=๐›ฝ(๐‘ก)โˆ’๐‘โˆ’๐›ฝ(๐‘ก). We claim that(1)โˆ’๐›ผ๎…ž๎…ž(๐‘ก)+๐‘€๐›ผ(๐‘ก)+๐‘๎€บ๐›ผ(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘๐›ผ(๐‘ก)+๐‘๐‘๐›ผ๎€ป(๐œƒ(๐‘ก))โ‰ค๐œŽ(๐‘ก)for๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ผ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐›ผ๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,(3.7)(2)โˆ’๐›ฝ๎…ž๎…ž(๐‘ก)+๐‘€๐›ฝ(๐‘ก)+๐‘๎‚ƒ๐›ฝ(๐œƒ(๐‘ก))โˆ’(๐‘€+๐‘Ÿ)๐‘โˆ’๐›ฝ(๐‘ก)+๐‘๐‘โˆ’๐›ฝ๎‚„(๐œƒ(๐‘ก))โ‰ฅ๐œŽ(๐‘ก)for๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ฝ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ค๐ฟ๐‘˜๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,(3.8)(3)๐›ผ(๐‘ก)โ‰ค๐›ผ(๐‘ก)โ‰ค๐›ฝ(๐‘ก)โ‰ค๐›ฝ(๐‘ก) for ๐‘กโˆˆ๐ฝ.
From (โ„Ž2) and (โ„Ž3), we have
โˆ’๐›ผ๎…ž๎…ž(๐‘ก)+๐‘€๐›ผ(๐‘ก)+๐‘๐›ผ(๐œƒ(๐‘ก))โ‰ค๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ผ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐›ผ๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜โˆ’,๐‘˜=1,โ€ฆ,๐‘š.(3.9)๐›ฝ๎…ž๎…ž(๐‘ก)+๐‘€๐›ฝ(๐‘ก)+๐‘๐›ฝ(๐œƒ(๐‘ก))โ‰ฅ๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ฝ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ค๐ฟ๐‘˜๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,(3.10)๐›ผ(0)โˆ’๐‘Ž๐›ผ๎…ž(0)โˆ’๐‘๐›ผ(๐œ‚)=๐›ผ(0)โˆ’๐‘Ž๐›ผ๎…ž(0)โˆ’๐‘๐›ผ(๐œ‚)โˆ’(๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚))๐ต๐›ผโ‰ค0,(3.11)๐›ผ(1)+๐‘๐›ผ๎…ž(1)โˆ’๐‘‘๐›ผ(๐œ‰)=๐›ผ(1)+๐‘๐›ผ๎…ž(0)โˆ’๐‘‘๐›ผ(๐œ‰)โˆ’(๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰))๐ต๐›ผโˆ’๎‚ƒโ‰ค0,(3.12)๐›ฝ(0)โˆ’๐‘Ž๐›ฝ๎…ž(0)โˆ’๐‘๎‚„๐›ฝ(๐œ‚)=โˆ’๐›ฝ(0)+๐‘Ž๐›ฝ๎…ž(0)+๐‘๐›ฝ(๐œ‚)โˆ’(๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚))๐ตโˆ’๐›ฝโˆ’๎‚ƒโ‰ค0,(3.13)๐›ฝ(1)+๐‘๐›ฝ๎…ž(1)โˆ’๐‘‘๎‚„๐›ฝ(๐œ‰)=โˆ’๐›ฝ(1)โˆ’๐‘๐›ฝ๎…ž(0)+๐‘‘๐›ฝ(๐œ‰)โˆ’(๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰))๐ตโˆ’๐›ฝโ‰ค0.(3.14) From (3.9)โ€“(3.14), we obtain that ๐‘๐›ผ(๐‘ก)=๐‘โˆ’๐›ฝ(๐‘ก)โ‰ก0,๐‘กโˆˆ๐ฝ. Combining (3.9) and (3.10), we obtain that (โ€‰1) and (โ€‰2) hold.
It is easy to see that ๐›ผโ‰ค๐›ผ,๐›ฝโ‰ค๐›ฝ on ๐ฝ. We show that ๐›ผโ‰ค๐›ฝ on ๐ฝ. Let ๐‘=๐›ผโˆ’๐›ฝ, then ๐‘(๐‘ก)=๐›ผ(๐‘ก)โˆ’๐›ฝ(๐‘ก)+๐‘๐›ผ(๐‘ก)+๐‘โˆ’๐›ฝ(๐‘ก). From (3.9)โ€“(3.14), we have
โˆ’๐‘๎…ž๎…ž(๐‘ก)+๐‘€๐‘(๐‘ก)+๐‘๐‘(๐œƒ(๐‘ก))โ‰ค0,๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š,๐‘(0)โˆ’๐‘Ž๐‘๎…ž(0)โˆ’๐‘๐‘(๐œ‚)=๐›ผ(0)โˆ’๐‘Ž๐›ผ๎…ž(0)โˆ’๐‘๐›ผ(๐œ‚)โˆ’(๐‘Ž๐œ‹+๐‘sin๐ผ(๐œ‹๐œ‚))๐ต๐›ผโˆ’๐›ฝ(0)+๐‘Ž๐›ฝ๎…ž(0)+๐‘๐›ฝ(๐œ‚)โˆ’(๐‘Ž๐œ‹+๐‘sin(๐œ‹๐œ‚))๐ตโˆ’๐›ฝโ‰ค0,๐‘(1)+๐‘๐‘๎…ž(1)โˆ’๐‘‘๐‘(๐œ‰)=๐›ผ(1)+๐‘๐›ผ๎…ž(1)โˆ’๐‘‘๐›ผ(๐œ‰)โˆ’(๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰))๐ต๐›ผโˆ’๐›ฝ(1)โˆ’๐‘๐›ฝ๎…ž(1)+๐‘‘๐›ฝ(๐œ‚)โˆ’(๐‘๐œ‹+๐‘‘sin(๐œ‹๐œ‰))๐ตโˆ’๐›ฝโ‰ค0,ฮ”๐‘๎…ž๎€ท๐‘ก๐‘˜๎€ธ=ฮ”๐›ผ๎…ž๎€ท๐‘ก๐‘˜๎€ธโˆ’ฮ”๐›ฝ๎…ž๎€ท๐‘ก๐‘˜๎€ธ+ฮ”๐‘๎…ž๐‘Ž๎€ท๐‘ก๐‘˜๎€ธ+ฮ”๐‘๎…žโˆ’๐›ฝ๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๎€ท๐›ผ๎€ท๐‘ก๐‘˜๎€ธ๎€ท๐‘กโˆ’๐›ฝ๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๎€ท๐‘๐›ผ๎€ท๐‘ก๐‘˜๎€ธ+๐‘โˆ’๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ๎€ธ=๐ฟ๐‘˜๐‘๎€ท๐‘ก๐‘˜๎€ธ.(3.15) By Theorem 2.1, we have that ๐‘โ‰ค0 on ๐ฝ, that is, ๐›ผโ‰ค๐›ฝ on ๐ฝ. So (โ€‰3) holds.
Step 2. Consider the boundary value problem โˆ’๐‘ข๎…ž๎…ž(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))=๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)=๐œ†,๐‘ข(1)+๐‘๐‘ข๎…ž(1)=๐›ฟ,(3.16) where ๐œ†โˆˆ๐‘,๐›ฟโˆˆ๐‘. We show that the boundary value problem (3.16) has one unique solution ๐‘ข(๐‘ก,๐œ†,๐›ฟ).
It is easy to check that the boundary value problem (3.16) is equivalent to the integral equation:
๐‘ข(๐‘ก)=๐›ฟ๐‘ก+(1โˆ’๐‘ก)๐œ†+๐‘๐œ†+๐‘Ž๐›ฟ+๎€œ๐‘Ž+๐‘+110[]+๎“๐บ(๐‘ก,๐‘ )๐œŽ(๐‘ )โˆ’๐‘€๐‘ข(๐‘ )โˆ’๐‘๐‘ข(๐œƒ(๐‘ ))๐‘‘๐‘ 0<๐‘ก๐‘˜<๐‘ก๎€ท๐‘กโˆ’๐‘ก๐‘˜๐ฟ๎€ธ๎€บ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜๎€ปโˆ’1๐‘Ž+๐‘+1(๐‘ก+๐‘)๐‘š๎“๐‘˜=1๎€บ๎€ท1โˆ’๐‘ก๐‘˜๎€ธ๐ฟ+๐‘๎€ป๎€บ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜๎€ป,(3.17) where 1๐บ(๐‘ก,๐‘ )=๎ƒฏ๐‘Ž+๐‘+1(๐‘Ž+๐‘ก)(1+๐‘โˆ’๐‘ ),0โ‰ค๐‘กโ‰ค๐‘ โ‰ค1,(๐‘Ž+๐‘ )(1+๐‘โˆ’๐‘ก),0โ‰ค๐‘ โ‰ค๐‘กโ‰ค1.(3.18)
It is easy to see that ๐‘ƒ๐ถ(๐ฝ,๐‘…) with norm โ€–๐‘ขโ€–=max๐‘กโˆˆ๐ฝ|๐‘ข(๐‘ก)| is a Banach space. Define a mapping ฮฆโˆถ๐‘ƒ๐ถ(๐ฝ,๐‘…)โ†’๐‘ƒ๐ถ(๐ฝ,๐‘…) by
(ฮฆ๐‘ข)(๐‘ก)=๐›ฟ๐‘ก+(1โˆ’๐‘ก)๐œ†+๐‘๐œ†+๐‘Ž๐›ฟ+๎€œ๐‘Ž+๐‘+110[]+๎“๐บ(๐‘ก,๐‘ )๐œŽ(๐‘ )โˆ’๐‘€๐‘ข(๐‘ )โˆ’๐‘๐‘ข(๐œƒ(๐‘ ))๐‘‘๐‘ 0<๐‘ก๐‘˜<๐‘ก๎€ท๐‘กโˆ’๐‘ก๐‘˜๐ฟ๎€ธ๎€บ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜๎€ปโˆ’1๐‘Ž+๐‘+1(๐‘ก+๐‘)๐‘š๎“๐‘˜=1๎€บ๎€ท1โˆ’๐‘ก๐‘˜๎€ธ๐ฟ+๐‘๎€ป๎€บ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜๎€ป.(3.19) For any ๐‘ฅ,๐‘ฆโˆˆ๐‘ƒ๐ถ(๐ฝ,๐‘…), we have ||||โ‰ค๎€œ(ฮฆ๐‘ฅ)(๐‘ก)โˆ’(ฮฆ๐‘ฆ)(๐‘ก)10[]๎‚ต๐บ(๐‘ก,๐‘ )๐‘€(๐‘ฆ(๐‘ )โˆ’๐‘ฅ(๐‘ ))+๐‘(๐‘ฆ(๐œƒ(๐‘ ))โˆ’๐‘ฅ(๐œƒ(๐‘ )))๐‘‘๐‘ +1+(1+๐‘)2๎‚ถ๐‘Ž+๐‘+1๐‘š๎“๐‘˜=1๐ฟ๐‘˜โ‰ค๎€œโ€–๐‘ฅโˆ’๐‘ฆโ€–10๎‚ต๐บ(๐‘ก,๐‘ )๐‘‘๐‘ โ€–๐‘ฅโˆ’๐‘ฆโ€–(๐‘€+๐‘)+1+(1+๐‘)2๎‚ถ๐‘Ž+๐‘+1๐‘š๎“๐‘˜=1๐ฟ๐‘˜โ€–๐‘ฅโˆ’๐‘ฆโ€–.(3.20) Since max๐‘กโˆˆ๐ฝ๎€œ10๐บ(๐‘ก,๐‘ )๐‘‘๐‘ =๐‘Ž(1+2๐‘)+12(๐‘Ž+๐‘+1)8๎‚€1+2๐‘๎‚๐‘Ž+๐‘+12,(3.21) the inequality (3.2) implies that ฮฆโˆถ๐‘ƒ๐ถ(๐ฝ)โ†’๐‘ƒ๐ถ(๐ฝ) is a contraction mapping. Thus there exists a unique ๐‘ขโˆˆ๐‘ƒ๐ถ(๐ฝ) such that ฮฆ๐‘ข=๐‘ข. The boundary value problem (3.16) has a unique solution.
Step 3. We show that for any ๐‘กโˆˆ๐ฝ, the unique solution ๐‘ข(๐‘ก,๐œ†,๐›ฟ) of the boundary value problem (3.16) is continuous in ๐œ† and ๐›ฟ. Let ๐‘ข(๐‘ก,๐œ†๐‘–,๐›ฟ๐‘–),๐‘–=1,2, be the solution of โˆ’๐‘ข๎…ž๎…ž(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))=๐œŽ(๐‘ก),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ=๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜,๐‘˜=1,โ€ฆ,๐‘š,๐‘ข(0)โˆ’๐‘Ž๐‘ข๎…ž(0)=๐œ†๐‘–,๐‘ข(1)+๐‘๐‘ข๎…ž(1)=๐›ฟ๐‘–,๐‘–=1,2.(3.22) Then ๐‘ข๎€ท๐‘ก,๐œ†๐‘–,๐›ฟ๐‘–๎€ธ=๐›ฟ๐‘–๐‘ก+(1โˆ’๐‘ก)๐œ†๐‘–+๐‘๐œ†๐‘–+๐‘Ž๐›ฟ๐‘–+๎€œ๐‘Ž+๐‘+110๎€บ๎€ท๐บ(๐‘ก,๐‘ )๐œŽ(๐‘ )โˆ’๐‘€๐‘ข๐‘ ,๐œ†๐‘–,๐›ฟ๐‘–๎€ธ๎€ทโˆ’๐‘๐‘ข๐œƒ(๐‘ ),๐œ†๐‘–,๐›ฟ๐‘–+๎“๎€ธ๎€ป๐‘‘๐‘ 0<๐‘ก๐‘˜<๐‘ก๎€ท๐‘กโˆ’๐‘ก๐‘˜๐ฟ๎€ธ๎€บ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜๎€ปโˆ’1ร—๐‘Ž+๐‘+1(๐‘ก+๐‘)๐‘š๎“๐‘˜=1๎€บ๎€ท1โˆ’๐‘ก๐‘˜๎€ธ๐ฟ+๐‘๎€ป๎€บ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ+๐‘’๐‘˜๎€ป,๐‘–=1,2.(3.23)
From (3.23), we have that
โ€–โ€–๐‘ข๎€ท๐‘ก,๐œ†1,๐›ฟ1๎€ธ๎€ทโˆ’๐‘ข๐‘ก,๐œ†2,๐›ฟ2๎€ธโ€–โ€–โ‰ค||๐œ†1โˆ’๐œ†2||+||๐›ฟ1โˆ’๐›ฟ2||โ€–โ€–๐‘ข๎€ท+(๐‘€+๐‘)๐‘ก,๐œ†1,๐›ฟ1๎€ธ๎€ทโˆ’๐‘ข๐‘ก,๐œ†2,๐›ฟ2๎€ธโ€–โ€–max๐‘กโˆˆ๐ฝ๎€œ10๎€ท๐บ(๐‘ก,๐‘ )๐‘‘๐‘ +โ€–๐‘ข๐‘ก,๐œ†1,๐›ฟ1๎€ธ๎€ทโˆ’๐‘ข๐‘ก,๐œ†2,๐›ฟ2๎€ธโ€–๎‚ต1+(1+๐‘)2๎‚ถ๐‘Ž+๐‘+1๐‘š๎“๐‘˜=1๐ฟ๐‘˜โ‰ค||๐œ†โ€–๐‘ฅโˆ’๐‘ฆโ€–1โˆ’๐œ†2||+||๐›ฟ1โˆ’๐›ฟ2||โ€–โ€–๐‘ข๎€ท+๐œ‡๐‘ก,๐œ†1,๐›ฟ1๎€ธ๎€ทโˆ’๐‘ข๐‘ก,๐œ†2,๐›ฟ2๎€ธโ€–โ€–.(3.24)
Hence
โ€–โ€–๐‘ข(๐‘ก,๐œ†1,๐›ฟ1๎€ท)โˆ’๐‘ข๐‘ก,๐œ†2,๐›ฟ2๎€ธโ€–โ€–0โ‰ค1๎€ท||๐œ†1โˆ’๐œ‡1โˆ’๐œ†2||+||๐›ฟ1โˆ’๐›ฟ2||๎€ธ.(3.25)
Step 4. We show that ๐›ผ(๐‘ก)โ‰ค๐‘ข(๐‘ก,๐œ†,๐›ฟ)โ‰ค๐›ฝ(๐‘ก)(3.26) for any ๐‘กโˆˆ๐ฝ, ๐œ†โˆˆ[๐‘๐›ผ(๐œ‚),๐‘๐›ฝ(๐œ‚)], and ๐›ฟโˆˆ[๐‘‘๐›ผ(๐œ‰),๐‘‘๐›ฝ(๐œ‰)], where ๐‘ข(๐‘ก,๐œ†,๐›ฟ) is unique solution of the boundary value problem (3.16).
Let ๐‘š(๐‘ก)=๐›ผ(๐‘ก)โˆ’๐‘ข(๐‘ก,๐œ†,๐›ฟ). From (3.9), (3.11), (3.12), and (3.16), we have that ๐‘š(0)โˆ’๐‘Ž๐‘š๎…ž(0)โ‰ค๐‘๐‘š(๐œ‚),๐‘š(1)+๐‘๐‘š๎…ž(1)โ‰ค๐‘‘๐‘š(๐œ‰), and
โˆ’๐‘š๎…ž๎…ž(๐‘ก)+๐‘€๐‘š(๐‘ก)+๐‘๐‘š(๐œƒ(๐‘ก))=โˆ’๐›ผ๎…ž๎…ž(๐‘ก)+๐‘€๐›ผ(๐‘ก)+๐‘๐›ผ(๐œƒ(๐‘ก))+๐‘ข๎…ž๎…ž(๐‘ก,๐œ†)โˆ’๐‘€๐‘ข(๐‘ก,๐œ†,๐›ฟ)โˆ’๐‘๐‘ข(๐œƒ(๐‘ก),๐œ†,๐›ฟ)โ‰ค๐œŽ(๐‘ก)โˆ’๐œŽ(๐‘ก)โ‰ค0,ฮ”๐‘š๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘ข๎€ท๐‘ก๐‘˜๎€ธ.(3.27) By Theorem 2.1, we obtain that ๐‘šโ‰ค0 on ๐ฝ, that is, ๐›ผ(๐‘ก)โ‰ค๐‘ข(๐‘ก,๐œ†,๐›ฟ) on ๐ฝ. Similarly, ๐‘ข(๐‘ก,๐œ†,๐›ฟ)โ‰ค๐›ฝ(๐‘ก) on ๐ฝ.
Step 5. Let ๐ท=[๐‘๐›ผ(๐œ‚),๐‘๐›ฝ(๐œ‚)]ร—[๐‘‘๐›ผ(๐œ‰),๐‘‘๐›ฝ(๐œ‰)]. Define a mapping ๐นโˆถ๐ทโ†’๐‘2 by ๐น(๐œ†,๐›ฟ)=(๐‘ข(๐œ‚,๐œ†,๐›ฟ),๐‘ข(๐œ‰,๐œ†,๐›ฟ)),(3.28) where ๐‘ข(๐‘ก,๐œ†,๐›ฟ) is unique solution of the boundary value problem (3.16). From Step 4, we have ๐น(๐ท)โŠ‚๐ท.(3.29) Since ๐ท is a compact convex set and ๐น is continuous, it follows by Schauderโ€™s fixed point theorem that ๐น has a fixed point (๐œ†0,๐›ฟ0)โˆˆ๐ท such that ๐‘ข๎€ท๐œ‚,๐œ†0,๐›ฟ0๎€ธ=๐œ†0๎€ท,๐‘ข๐œ‰,๐œ†0,๐›ฟ0๎€ธ=๐›ฟ0.(3.30) Obviously, ๐‘ข(๐‘ก,๐œ†0,๐›ฟ0) is unique solution of the boundary value problem (3.1). This completes the proof.

4. Main Results

Let ๐‘€โˆˆ๐‘, ๐‘โˆˆ๐‘. We first give the following definition.

Definition 4.1. A function ๐›ผโˆˆ๐ธ is called a lower solution of the boundary value problem (1.2) if โˆ’๐›ผ๎…ž๎…ž(๐‘ก)+(๐‘€+๐‘Ÿ)๐‘๐›ผ(๐‘ก)+๐‘๐‘๐›ผ(๐œƒ(๐‘ก))โ‰ค๐‘“(๐‘ก,๐›ผ(๐‘ก),๐›ผ(๐œƒ(๐‘ก))),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ผ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ผ๐‘˜๎€ท๐›ผ๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๐‘๐›ผ๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š.(4.1)

Definition 4.2. A function ๐›ฝโˆˆ๐ธ is called an upper solution of the boundary value problem (1.2) if โˆ’๐›ฝ๎…ž๎…ž(๐‘ก)โˆ’(๐‘€+๐‘Ÿ)๐‘โˆ’๐›ฝ(๐‘ก)โˆ’๐‘๐‘โˆ’๐›ฝ(๐œƒ(๐‘ก))โ‰ฅ๐‘“(๐‘ก,๐›ฝ(๐‘ก),๐›ฝ(๐œƒ(๐‘ก)))๐‘กโˆˆ๐ฝ,๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ฝ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ค๐ผ๐‘˜๐›ฝ๎€ท๐‘ก๐‘˜๎€ธโˆ’๐ฟ๐‘˜๐‘โˆ’๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ,๐‘˜=1,โ€ฆ,๐‘š.(4.2) Our main result is the following theorem.

Theorem 4.3. Assume that (๐ป)โ€‰โ€‰holds. If the following conditions are satisfied: (๐ป1)๐›ผ,๐›ฝ are lower and upper solutions for boundary value problem (1.2) respectively, and ๐›ผ(๐‘ก)โ‰ค๐›ฝ(๐‘ก) on ๐ฝ,(๐ป2)the constants ๐‘€,๐‘ in definition of upper and lower solutions satisfy (2.3), (3.2), and ๐‘“๎€ท(๐‘ก,๐‘ฅ,๐‘ฆ)โˆ’๐‘“๐‘ก,๐‘ฅ,๐‘ฆ๎€ธ๎€ทโ‰ฅโˆ’๐‘€๐‘ฅโˆ’๐‘ฅ๎€ธ๎€ทโˆ’๐‘๐‘ฆโˆ’๐‘ฆ๎€ธ,๐ผ๐‘˜(๐‘ฅ)โˆ’๐ผ๐‘˜(๐‘ฆ)โ‰ฅ๐ฟ๐‘˜(๐‘ฅโˆ’๐‘ฆ),๐‘ฅโ‰ค๐‘ฆ,(4.3) for ๐›ผ(๐‘ก)โ‰ค๐‘ฅโ‰ค๐‘ฅโ‰ค๐›ฝ(๐‘ก),๐›ผ(๐œƒ(๐‘ก))โ‰ค๐‘ฆโ‰ค๐‘ฆโ‰ค๐›ฝ(๐œƒ(๐‘ก)),๐‘กโˆˆ๐ฝ.
Then, there exist monotone sequences {๐›ผ๐‘›},{๐›ฝ๐‘›} with ๐›ผ0=๐›ผ,๐›ฝ0=๐›ฝ such that lim๐‘›โ†’โˆž๐›ผ๐‘›(๐‘ก)=๐œŒ(๐‘ก),lim๐‘›โ†’โˆž๐›ฝ๐‘›(๐‘ก)=๐œš(๐‘ก) uniformly on ๐ฝ, and ๐œŒ,๐œš are the minimal and the maximal solutions of (1.2), respectively, such that
๐›ผ0โ‰ค๐›ผ1โ‰ค๐›ผ2โ‰คโ‹ฏ๐›ผ๐‘›โ‰ค๐œŒโ‰ค๐‘ฅโ‰ค๐œšโ‰ค๐›ฝ๐‘›โ‰คโ‹ฏโ‰ค๐›ฝ2โ‰ค๐›ฝ1โ‰ค๐›ฝ0(4.4) on ๐ฝ, where ๐‘ฅ is any solution of (1.1) such that ๐›ผ(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐›ฝ(๐‘ก) on ๐ฝ.

Proof. Let [๐›ผ,๐›ฝ]={๐‘ขโˆˆ๐ธโˆถ๐›ผ(๐‘ก)โ‰ค๐‘ข(๐‘ก)โ‰ค๐›ฝ(๐‘ก),๐‘กโˆˆ๐ฝ}. For any ๐›พโˆˆ[๐›ผ,๐›ฝ], we consider the boundary value problem โˆ’๐‘ข๎…ž๎…ž(๐‘ก)+๐‘€๐‘ข(๐‘ก)+๐‘๐‘ข(๐œƒ(๐‘ก))=๐‘“(๐‘ก,๐›พ(๐‘ก),๐›พ(๐œƒ(๐‘ก)))+๐‘€๐›พ(๐‘ก)+๐‘๐›พ(๐œƒ(๐‘ก)),๐‘กโˆˆ๐ฝ,ฮ”๐‘ข๎…ž๎€ท๐‘ก๐‘˜๎€ธ=๐ผ๐‘˜๎€ท๐›พ๎€ท๐‘ก๐‘˜๎€ธ๎€ธโˆ’๐ฟ๐‘˜๎€ท๐‘ข๎€ท๐‘ก๐‘˜๎€ธ๎€ท๐‘กโˆ’๐›พ๐‘˜๎€ธ๎€ธ,๐‘˜=1,โ€ฆ,๐‘š.๐‘ข(0)โˆ’๐‘Ž๐‘ฅ๎…ž(0)=๐‘๐‘ข(๐œ‚),๐‘ข(1)+๐‘๐‘ข๎…ž(1)=๐‘‘๐‘ข(๐œ‰).(4.5)
Since ๐›ผ is a lower solution of (1.2), from (๐ป2), we have that
โˆ’๐›ผ๎…ž๎…ž(๐‘ก)+๐‘€๐›ผ(๐‘ก)+๐‘๐›ผ(๐œƒ(๐‘ก))โ‰ค๐‘“(๐‘ก,๐›ผ(๐‘ก),๐›ผ(๐œƒ(๐‘ก)))+๐‘€๐›ผ(๐‘ก)+๐‘๐›ผ(๐œƒ(๐‘ก))โˆ’(๐‘€+๐‘Ÿ)๐‘๐›ผ(๐‘ก)โˆ’๐‘๐‘๐›ผ(๐œƒ(๐‘ก))โ‰ค๐‘“(๐‘ก,๐›พ(๐‘ก),๐›พ(๐œƒ(๐‘ก)))+๐‘€๐›พ(๐‘ก)+๐‘๐›พ(๐œƒ(๐‘ก))โˆ’(๐‘€+๐‘Ÿ)๐‘๐›ผ(๐‘ก)โˆ’๐‘๐‘๐›ผ(๐œƒ(๐‘ก)),ฮ”๐›ผ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ผ๐‘˜๎€ท๐›ผ๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๐‘๐›ผ๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ผ๐‘˜๎€ท๐›พ๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๐›ผ๎€ท๐‘ก๐‘˜๎€ธโˆ’๐ฟ๐‘˜๐›พ๎€ท๐‘ก๐‘˜๎€ธ+๐ฟ๐‘˜๐‘๐›ผ๎€ท๐‘ก๐‘˜๎€ธ.(4.6)
Similarly, we have that
โˆ’๐›ฝ๎…ž๎…ž(๐‘ก)+๐‘€๐›ฝ(๐‘ก)+๐‘๐›ฝ(๐œƒ(๐‘ก))โ‰ฅ๐‘“(๐‘ก,๐›พ(๐‘ก),๐›พ(๐œƒ(๐‘ก)))+๐‘€๐›พ(๐‘ก)+๐‘๐›พ(๐œƒ(๐‘ก))+(๐‘€+๐‘Ÿ)๐‘โˆ’๐›ฝ(๐‘ก)+๐‘๐‘โˆ’๐›ฝ(๐œƒ(๐‘ก)),ฮ”๐›ฝ๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ค๐ผ๐‘˜๎€ท๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ๎€ธโˆ’๐ฟ๐‘˜๐‘โˆ’๐›ฝ๎€ท๐‘ก๐‘˜๎€ธโ‰ค๐ผ๐‘˜๎€ท๐›พ๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๐›ฝ๎€ท๐‘ก๐‘˜๎€ธโˆ’๐ฟ๐‘˜๐›พ๎€ท๐‘ก๐‘˜๎€ธโˆ’๐ฟ๐‘˜๐‘โˆ’๐›ฝ๎€ท๐‘ก๐‘˜๎€ธ.(4.7)
By Theorem 3.1, the boundary value problem (4.5) has a unique solution ๐‘ขโˆˆ[๐›ผ,๐›ฝ]. We define an operator ฮจ by ๐‘ข=ฮจ๐›พ, then ฮจ is an operator from [๐›ผ,๐›ฝ] to [๐›ผ,๐›ฝ].
We will show that
(a)๐›ผโ‰คฮจ๐›ผ,ฮจ๐›ฝโ‰ค๐›ฝ,(b)ฮจ is nondecreasing in [๐›ผ,๐›ฝ].
From ฮจ๐›ผโˆˆ[๐›ผ,๐›ฝ] and ฮจ๐›ฝโˆˆ[๐›ผ,๐›ฝ], we have that (a) holds. To prove (b), we show that ฮจ๐œˆ1โ‰คฮจ๐œˆ2 if ๐›ผโ‰ค๐œˆ1โ‰ค๐œˆ2โ‰ค๐›ฝ.
Let ๐œˆโˆ—1=ฮจ๐œˆ1,๐œˆโˆ—2=ฮจ๐œˆ2 ,and ๐‘=๐œˆโˆ—1โˆ’๐œˆโˆ—2, then by (๐ป2) and boundary conditions, we have that
โˆ’๐‘๎…ž๎…ž๎€ท(๐‘ก)+๐‘€๐‘(๐‘ก)+๐‘๐‘(๐œƒ(๐‘ก))=๐‘“๐‘ก,๐œˆ1(๐‘ก),๐œˆ1๎€ธ(๐œƒ(๐‘ก))+๐‘€๐œˆ1(๐‘ก)+๐‘๐œˆ1๎€ท(๐œƒ(๐‘ก))โˆ’๐‘“๐‘ก,๐œˆ2(๐‘ก),๐œˆ2๎€ธ(๐œƒ(๐‘ก))โˆ’๐‘€๐œˆ2(๐‘ก)โˆ’๐‘๐œˆ2(๐œƒ(๐‘ก))โ‰ค0,ฮ”๐‘๎…ž๎€ท๐‘ก๐‘˜๎€ธโ‰ฅ๐ฟ๐‘˜๐‘๎€ท๐‘ก๐‘˜๎€ธ,๐‘(0)โˆ’๐‘Ž๐‘๎…ž(0)=๐‘๐‘(๐œ‚),๐‘(1)+๐‘๐‘ข๎…ž(1)=๐‘‘๐‘(๐œ‰).(4.8) By Theorem 2.1, ๐‘(๐‘ก)โ‰ค0 on ๐ฝ, which implies that ฮจ๐œˆ1โ‰คฮจ๐œˆ2.
Define the sequences {๐›ผ๐‘›},{๐›ฝ๐‘›} with ๐›ผ0=๐›ผ,๐›ฝ0=๐›ฝ such that ๐›ผ๐‘›+1=ฮจ๐›ผ๐‘›,๐›ฝ๐‘›+1=ฮจ๐›ฝ๐‘› for ๐‘›=0,1,2,โ€ฆ From (a) and (b), we have
๐›ผ0โ‰ค๐›ผ1โ‰ค๐›ผ2โ‰คโ‹ฏโ‰ค๐›ผ๐‘›โ‰ค๐›ฝ๐‘›โ‰คโ‹ฏโ‰ค๐›ฝ2โ‰ค๐›ฝ1โ‰ค๐›ฝ0(4.9) on ๐‘กโˆˆ๐ฝ, and each ๐›ผ๐‘›,๐›ฝ๐‘›โˆˆ๐ธ satisfies โˆ’๐›ผ๐‘›๎…ž๎…ž(๐‘ก)+๐‘€๐›ผ๐‘›(๐‘ก)+๐‘๐›ผ๐‘›๎€ท(๐œƒ(๐‘ก))=๐‘“๐‘ก,๐›ผ๐‘›โˆ’1(๐‘ก),๐›ผ๐‘›โˆ’1๎€ธ(๐œƒ(๐‘ก))+๐‘€๐›ผ๐‘›โˆ’1(๐‘ก)+๐‘๐›ผ๐‘›โˆ’1(๐œƒ(๐‘ก)),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ผ๎…ž๐‘›๎€ท๐‘ก๐‘˜๎€ธ=๐ผ๐‘˜๎€ท๐›ผ๐‘›โˆ’1๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๎€ท๐›ผ๐‘›๎€ท๐‘ก๐‘˜๎€ธโˆ’๐›ผ๐‘›โˆ’1๎€ท๐‘ก๐‘˜๐›ผ๎€ธ๎€ธ,๐‘˜=1,2,โ€ฆ,๐‘š,๐‘›(0)โˆ’๐‘Ž๐›ผ๎…ž๐‘›(0)=๐‘๐›ผ๐‘›(๐œ‚),๐›ผ๐‘›(1)+๐‘๐›ผ๎…ž๐‘›(1)=๐‘‘๐›ผ๐‘›(๐œ‰),โˆ’๐›ฝ๐‘›๎…ž๎…ž(๐‘ก)+๐‘€๐›ฝ๐‘›(๐‘ก)+๐‘๐›ฝ๐‘›๎€ท(๐œƒ(๐‘ก))=๐‘“๐‘ก,๐›ฝ๐‘›โˆ’1(๐‘ก),๐›ฝ๐‘›โˆ’1๎€ธ(๐œƒ(๐‘ก))+๐‘€๐›ฝ๐‘›โˆ’1(๐‘ก)+๐‘๐›ฝ๐‘›โˆ’1(๐œƒ(๐‘ก)),๐‘กโˆˆ๐ฝ,๐‘กโ‰ ๐‘ก๐‘˜,ฮ”๐›ฝ๐‘›๎€ท๐‘ก๐‘˜๎€ธ=๐ผ๐‘˜๎€ท๐›ฝ๐‘›โˆ’1๎€ท๐‘ก๐‘˜๎€ธ๎€ธ+๐ฟ๐‘˜๎€ท๐›ฝ๐‘›๎€ท๐‘ก๐‘˜๎€ธโˆ’๐›ฝ๐‘›โˆ’1๎€ท๐‘ก๐‘˜๐›ฝ๎€ธ๎€ธ,๐‘˜=1,2,โ€ฆ,๐‘š,๐‘›(0)โˆ’๐‘Ž๐›ฝ๎…ž๐‘›(0)=๐‘๐›ฝ๐‘›(๐œ‚),๐›ฝ๐‘›(1)+๐‘๐›ฝ๎…ž๐‘›(1)=๐‘‘๐›ฝ๐‘›(๐œ‰).(4.10) Therefore, there exist ๐œŒ,๐œš such that such that lim๐‘›โ†’โˆž๐›ผ๐‘›(๐‘ก)=๐œŒ(๐‘ก), lim๐‘›โ†’โˆž๐›ฝ๐‘›(๐‘ก)=๐œš(๐‘ก) uniformly on ๐ฝ. Clearly, ๐œŒ,๐œš are solutions of (1.1).
Finally, we prove that if ๐‘ฅโˆˆ[๐›ผ0,๐›ฝ0] is any solution of (1.1), then ๐œŒ(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐œš(๐‘ก) on ๐ฝ. To this end, we assume, without loss of generality, that ๐›ผ๐‘›(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐›ฝ๐‘›(๐‘ก) for some ๐‘›. Since ๐›ผ0(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐›ฝ0(๐‘ก), from property (b), we can obtain
๐›ผ๐‘›+1(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐›ฝ๐‘›+1(๐‘ก),๐‘กโˆˆ๐ฝ.(4.11) Hence, we can conclude that ๐›ผ๐‘›(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐›ฝ๐‘›(๐‘ก),โˆ€๐‘›.(4.12) Passing to the limit as ๐‘›โ†’โˆž, we obtain ๐œŒ(๐‘ก)โ‰ค๐‘ฅ(๐‘ก)โ‰ค๐œš(๐‘ก),๐‘กโˆˆ๐ฝ.(4.13) This completes the proof.

Acknowledgments

This work is supported by the NNSF of China (10571050;10871062) and Hunan Provincial Natural Science Foundation of China (NO:09JJ3010), and Science Research Fund of Hunan provincial Education Department (No: 06C052 ).