Abstract

We present some new existence results for singular positone and semipositone nonlinear fractional boundary value problem D𝛼0+𝑢(𝑡)=𝜇𝑎(𝑡)𝑓(𝑡,𝑢(𝑡)),  0<𝑡<1, 𝑢(0)=𝑢(1)=𝑢(0)=𝑢(1)=0, where 𝜇>0, 𝑎, and 𝑓 are continuous, 𝛼(3,4] is a real number, and D𝛼0+ is Riemann-Liouville fractional derivative. Throughout our nonlinearity may be singular in its dependent variable. Two examples are also given to illustrate the main results.

1. Introduction

Fractional calculus has played a significant role in engineering, science, economy, and other fields. Many papers and books on fractional calculus, and fractional differential equations have appeared recently, (see [19]). It should be noted that most of papers and books on fractional calculus, are devoted to the solvability of initial fractional differential equations (see [3, 4]). Here, we consider positive solutions of nonlinear fractional differential equation conjugate boundary value problem involving Riemann-Liouville derivative: 𝐃𝛼0+𝑢𝑢(𝑡)=𝜇𝑎(𝑡)𝑓(𝑡,𝑢(𝑡)),0<𝑡<1,(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,(1.1) where 𝜇>0, 𝑎, and 𝑓 are continuous. 𝛼(3,4] is a real number, and 𝐃𝛼0+ is the Riemann-Liouville fractional derivative.

It is well known that in mechanics the boundary value problem (1.1) where 𝛼=4 describes the deflection of an elastic beam rigidly fixed at both ends. The integer order boundary value problem (1.2) has been studied extensively. For details, see for instance, the papers [1013] and the references therein. In [10, 12], Yao considered 𝑢(𝑡)=𝜆𝑓(𝑡,𝑢(𝑡)),0<𝑡<1,𝑢(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,(1.2) and using a Krasnosel'skii fixed-point theorem, derived a 𝜆-interval such that, for any 𝜆 lying in this interval, the beam equation has existence and multiplicity on positive solution. In this paper, we will consider a more general situation, namely, the boundary value problem (1.1). To the best of our knowledge, there have been few papers which deal with the boundary value problem (1.1) for nonlinear fractional differential equation.

In this paper, in analogy with boundary value problems for differential equations of integer order, we firstly derive the corresponding Green's function named the fractional Green' function. Consequently problem (1.1) is reduced to an equivalent Fredholm integral equation of the second kind. Finally, using Krasnosel'skii's fixed-point theorems, the existence of positive solutions are obtained.

2. Preliminaries

For completeness, in this section, we will demonstrate and study the definitions and some fundamental facts of Riemann-Liouville derivatives of fractional order which can be found in [5].

Definition 2.1 (see [5, Definition 2.1]). The integral 𝐼𝛼0+1𝑓(𝑥)=Γ(𝛼)𝑥0𝑓(𝑡)(𝑥𝑡)1𝛼𝑑𝑡,𝑥>0,(2.1) where 𝛼>0, is called the Riemann-Liouville fractional integral of order 𝛼.

Definition 2.2 (see [5, page 36-37]). For a function 𝑓(𝑥) given in the interval [0,), the expression 𝐃𝛼0+1𝑓(𝑥)=𝑑Γ(𝑛𝛼)𝑑𝑥𝑛x0𝑓(𝑡)(𝑥𝑡)𝛼𝑛+1𝑑𝑡,(2.2) where 𝑛=[𝛼]+1,[𝛼] denotes the integer part of number 𝛼, is called the Riemann-Liouville fractional derivative of order 𝛼.
From the definition of Riemann-Liouville derivative, for 𝜇>1, we have 𝐃𝛼0+𝑥𝜇=Γ(1+𝜇)𝑥Γ(1+𝜇𝛼)𝜇𝛼,(2.3) giving in particular 𝐃𝛼0+𝑥𝛼𝑚=0,𝑚=1,2,3,,𝑁, where 𝑁 is the smallest integer greater than or equal to 𝛼.

Lemma 2.3. Let 𝛼>0, then the differential equation 𝐃𝛼0+𝑢(𝑡)=0(2.4) has solutions 𝑢(𝑡)=𝑐1𝑡𝛼1+𝑐2𝑡𝛼2++𝑐𝑛𝑡𝛼𝑛, 𝑐𝑖, 𝑖=1,,2,𝑛, as unique solutions, where 𝑛 is the smallest integer greater than or equal to 𝛼.
As 𝐃𝛼0+𝐼𝛼0+𝑢=𝑢, from Lemma 2.3, we deduce the following statement.

Lemma 2.4. Let 𝛼>0, then 𝐼𝛼0+𝐃𝛼0+𝑢(𝑡)=𝑢(𝑡)+𝑐1𝑡𝛼1+𝑐2𝑡𝛼2++𝑐𝑛𝑡𝛼𝑛,(2.5) for some 𝑐𝑖, 𝑖=1,2,,𝑛, 𝑛 is the smallest integer greater than or equal to 𝛼.
The following Krasnosel'skii's fixed-point theorem will play a major role in our next analysis.

Theorem 2.5 (see [6]). Let 𝑋 be a Banach space, and let 𝑃𝑋 be a cone in 𝑋. Assume that Ω1,Ω2 are open subsets of 𝑋 with 0Ω1Ω1Ω2, and let 𝑆𝑃𝑃 be a completely continuous operator such that, either (1)𝑆𝑤𝑤, 𝑤𝑃𝜕Ω1, 𝑆𝑤𝑤, 𝑤𝑃𝜕Ω2, or(2)𝑆𝑤𝑤, 𝑤𝑃𝜕Ω1, 𝑆𝑤𝑤,𝑤𝑃𝜕Ω2.Then 𝑆 has a fixed-point in 𝑃(Ω2Ω1).

3. Green's Function and Its Properties

In this section, we derive the corresponding Green's function for boundary-value problem (1.1), and obtain some properties of Green's function.

Lemma 3.1. Let (𝑡)𝐶[0,1] be a given function, then the boundary-value problem, 𝐃𝛼0+𝑢𝑢(𝑡)=(𝑡),0<𝑡<1,3<𝛼4,(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,(3.1) has a unique solution 𝑢(𝑡)=10𝐺(𝑡,𝑠)(𝑠)𝑑𝑠,(3.2) where 1𝐺(𝑡,𝑠)=𝑡Γ(𝛼)𝛼2(1𝑠)𝛼2[](𝑠𝑡)+(𝛼2)(1𝑡)𝑠+(𝑡𝑠)𝛼1𝑡,0𝑠𝑡1,𝛼2(1𝑠)𝛼2[](𝑠𝑡)+(𝛼2)(1𝑡)𝑠,0𝑡𝑠1.(3.3) Here 𝐺(𝑡,𝑠) is called Green's function of boundary-value problem (3.1).

Proof. By means of the Lemma 2.4, we can reduce (3.1) to an equivalent integral equation 𝑢(𝑡)=𝑐1𝑡𝛼1+𝑐2𝑡𝛼2+𝑐3𝑡𝛼3+𝑐4𝑡𝛼4+𝑡0(𝑡𝑠)𝛼1Γ(𝛼)(𝑠)𝑑𝑠.(3.4) From 𝑢(0)=𝑢(1)=𝑢(0)=𝑢(1)=0, we have 𝑐3=𝑐4=0 and 𝑐1=10(1𝑠)𝛼2(2𝑠𝛼𝑠1)𝑐Γ(𝛼)(𝑠)𝑑𝑠,2=10(𝛼1)(1𝑠)𝛼2𝑠Γ(𝛼)(𝑠)𝑑𝑠.(3.5) Therefore, the unique solution of (3.1) is 𝑢(𝑡)=10𝑡𝛼1(1𝑠)𝛼2(2𝑠𝛼𝑠1)Γ(𝛼)(𝑠)𝑑𝑠+10𝑡𝛼2(𝛼1)(1𝑠)𝛼2𝑠Γ(𝛼)(𝑠)𝑑𝑠+𝑡0(𝑡𝑠)𝛼1=1Γ(𝛼)(𝑠)𝑑𝑠Γ(𝛼)𝑡0𝑡𝛼1(1𝑠)𝛼2(2𝑠𝛼𝑠1)+𝑡𝛼2(𝛼1)(1𝑠)𝛼2𝑠+(𝑡𝑠)𝛼1+(𝑠)𝑑𝑠1𝑡𝑡𝛼1(1𝑠)𝛼2(2𝑠𝛼𝑠1)+𝑡𝛼2(𝛼1)(1𝑠)𝛼2𝑠=(𝑠)𝑑𝑠10𝐺(𝑡,𝑠)(𝑠)𝑑𝑠.(3.6) The proof is finished.

Lemma 3.2. The function 𝐺(𝑡,𝑠) defined by (3.3) has the following properties: (1)𝐺(𝑡,𝑠)=𝐺(1𝑠,1𝑡),𝑓𝑜𝑟𝑡,𝑠[0,1];(2)𝑡𝛼2(1𝑡)2𝑞(𝑠)𝐺(𝑡,𝑠)(𝛼1)𝑞(𝑠) and 𝐺(𝑡,𝑠)((𝛼1)(𝛼2)/Γ(𝛼))𝑡𝛼2(1𝑡)2 for 𝑡,𝑠[0,1],where 𝑞(𝑠)=((𝛼2)/Γ(𝛼))𝑠2(1𝑠)𝛼2.

Proof. Observing the expression of 𝐺(𝑡,𝑠), it is clear that 𝐺(𝑡,𝑠)=𝐺(1𝑠,1𝑡) for 𝑡,𝑠[0,1]. In the following, we consider Γ(𝛼)𝐺(𝑡,𝑠).
For 0𝑠𝑡1, we have
Γ(𝛼)𝐺(𝑡,𝑠)=(𝑡𝑠)𝛼1(𝑡𝑡𝑠)𝛼2(𝑡𝑠)+(𝛼2)(1𝑡)(𝑡𝑡𝑠)𝛼2𝑠=(𝑡𝑠)(𝑡𝑠)𝛼2(𝑡𝑡𝑠)𝛼2+(𝛼2)(1𝑡)(𝑡𝑡𝑠)𝛼2𝑠=(𝑡𝑠)(𝛼2)𝑡𝑡𝑠𝑡𝑠𝑥𝛼3𝑑𝑥+(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)𝑠(𝑡𝑠)(𝛼2)(𝑡𝑡𝑠)𝛼3[]+(𝑡𝑡𝑠)(𝑡𝑠)(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)𝑠=(𝑡𝑠)(𝛼2)(𝑡𝑡𝑠)𝛼3(1𝑡)𝑠+(𝛼2)(𝑡𝑡𝑠)𝛼2=(1𝑡)𝑠(𝛼2)(𝑡𝑡𝑠)𝛼3[](1𝑡)𝑠(𝑡𝑠)+(𝑡𝑡𝑠)(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)2𝑠2=(𝛼2)𝑡𝛼2(1𝑡)2𝑠2(1𝑠)𝛼2,(3.7) and Γ(𝛼)𝐺(𝑡,𝑠)=(𝑡𝑠)(𝛼2)𝑡𝑡𝑠𝑡𝑠𝑥𝛼3𝑑𝑥+(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)𝑠(𝑡𝑠)(𝛼2)(𝑡𝑠)𝛼3[](𝑡𝑡𝑠)(𝑡𝑠)+(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)𝑠=(𝑡𝑠)(𝛼2)(𝑡𝑠)𝛼3(1𝑡)𝑠+(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)𝑠=(𝛼2)(1𝑡)𝑠(𝑡𝑡𝑠)𝛼2(𝑡𝑠)𝛼2(𝛼2)2(1𝑡)2𝑠2(𝑡𝑡𝑠)𝛼3(𝛼1)(𝛼2)𝑡𝛼3(1𝑡)2𝑠2(1𝑠)𝛼3(𝛼1)(𝛼2)𝑠2(1𝑠)𝛼2.(3.8)
For 0𝑡𝑠1, since 𝛼>3, we have
Γ(𝛼)𝐺(𝑡,𝑠)=(𝑡𝑡𝑠)𝛼2[](𝑠𝑡)+(𝛼2)(1𝑡)𝑠(𝛼2)(𝑡𝑡𝑠)𝛼2(1𝑡)𝑠=(𝛼2)𝑡𝛼2(1𝑠)𝛼2(1𝑡)𝑠(𝛼2)𝑡𝛼2(1𝑡)2𝑠2(1𝑠)𝛼2,Γ(𝛼)𝐺(𝑡,𝑠)=𝑡𝛼2(1𝑠)𝛼2[](𝑠𝑡)+(𝛼2)(1𝑡)𝑠𝑡𝛼2(1𝑠)𝛼2[]𝑠+(𝛼2)𝑠(𝛼1)𝑡(1𝑠)𝛼2𝑠(𝛼1)𝑠2(1𝑠)𝛼2(𝛼2)(𝛼1)𝑠2(1𝑠)𝛼2.(3.9) Thus 𝑡𝛼2(1𝑡)2𝑞(𝑠)𝐺(𝑡,𝑠)(𝛼1)𝑞(𝑠), for 𝑡,𝑠[0,1]. Combining 𝐺(𝑡,𝑠)=𝐺(1𝑠,1𝑡), we have 𝐺(𝑡,𝑠)(𝛼1)𝑞(1𝑡)=(𝛼1)(𝛼2)𝑡Γ(𝛼)𝛼2(1𝑡)2[],for𝑡,𝑠0,1.(3.10) This completes the proof.

We note that 𝑢(𝑡) is a solution of (1.1) if and only if

𝑢(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))𝑑𝑠,0𝑡1.(3.11)

For our constructions, we will consider the Banach space 𝐸=𝐶[0,1] equipped with standard norm 𝑢=max0𝑡1𝑢(𝑡),𝑢𝑋. We define a cone 𝐾 by 𝑡𝐾=𝑢𝑋𝑢(𝑡)𝛼2(1𝑡)2[]]𝛼1𝑢,𝑡0,1,𝛼(3,4.(3.12) Define an integral operator 𝐴𝐾𝑋 by 𝐴𝑢(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑎(𝑠)𝑓(𝑢(𝑠))𝑑𝑠,0𝑡1,𝑢𝐾.(3.13) Notice from (3.13) and Lemma 3.2 that, for 𝑢𝐾, 𝐴𝑢(𝑡)0 on [0,1] and 𝐴𝑢(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠𝜇10(𝛼1)𝑞(𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠,(3.14) then 𝐴𝑢10(𝛼1)𝑞(𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠 .

On the other hand, we have 𝐴𝑢(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠𝜇10𝑡𝛼2(1𝑡)2𝑞𝑡(𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠𝛼2(1𝑡)2𝜇𝛼110𝑡(𝛼1)𝑞(𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠𝛼2(1𝑡)2𝛼1𝐴𝑢.(3.15) Thus, 𝐴(𝐾)𝐾. In addition, standard arguments show that 𝐴 is completely continuous.

4. Singular Positone Problems

In this section we present some new result for the singular problem 𝐃𝛼0+𝑢𝑢(𝑡)=𝜇𝑎(𝑡)𝑓(𝑡,𝑢(𝑡)),0<𝑡<1,3<𝛼4,(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,(4.1) where 𝜇>0 and nonlinearity 𝑓 may be singular at 𝑢=0.

Using Theorem 2.5 we establish the following main result.

Theorem 4.1. Suppose that the following conditions are satisfied. 𝑎𝐶(0,1)𝐿1[][][][0,1𝑤𝑖𝑡𝑎>0𝑜𝑛(0,1)(4.2)𝑓0,1×(0,)(0,)𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠,(4.3)𝑓(𝑡,𝑢)𝑔(𝑢)+(𝑢)𝑜𝑛0,1×(0,)𝑤𝑖𝑡𝑔>0𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑎𝑛𝑑𝑛𝑜𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑜𝑛(0,),0𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑜𝑛0,)𝑎𝑛𝑑𝑔𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑜𝑛(0,),(4.4)𝐾0𝑤𝑖𝑡𝑔(𝑥𝑦)𝐾0𝑎𝑔(𝑥)𝑔(𝑦)𝑥>0,𝑦>0,(4.5)0=𝜇(𝛼1)10𝑠𝑞(𝑠)𝑎(𝑠)𝑔𝛼2(1𝑠)2𝑟𝑑𝑠<,(4.6)𝑟>0𝑤𝑖𝑡𝑔(𝑟)+(𝑟)>𝐾20𝑎0𝑔11𝛼1,(4.7)𝑇𝑒𝑟𝑒𝑒𝑥𝑖𝑠𝑡𝑠0<𝜃<2(𝑐𝑜𝑜𝑠𝑒𝑎𝑛𝑑𝑓𝑖𝑥𝑖𝑡)𝑎𝑛𝑑𝑎𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠,𝑛𝑜𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑔1(0,)(0,),𝑎𝑛𝑑𝑎𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1[0,)(0,)𝑤𝑖𝑡1𝑔1𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑜𝑛(0,)𝑎𝑛𝑑𝑤𝑖𝑡𝑓(𝑡,𝑢)𝑔1(𝑢)+1[](𝑢)𝑓𝑜𝑟(𝑡,𝑢)𝜃,1𝜃×(0,),(4.8)0<𝑅1<𝑟<𝑅2𝑅𝑤𝑖𝑡(𝑖=1,2),𝑖𝑔1(𝜃𝛼/𝛼1)𝑅𝑖𝑔1𝑅𝑖𝑔1(𝜃𝛼/𝛼1)𝑅𝑖+𝑔1𝑅𝑖1(𝜃𝛼/𝛼1)𝑅𝑖<𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)𝑑𝑠,(4.9) here 𝐺(𝑡,𝑠) is Green's function and 𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)𝑑𝑠=sup𝑡[0,1]𝜃1𝜃𝐺(𝑡,𝑠)𝑎(𝑠)𝑑𝑠.(4.10) Then (4.1) has two nonnegative solutions 𝑢𝑖 with 𝑅1<𝑢1<𝑟<𝑢2<𝑅2 and 𝑢𝑖(𝑡)>0 for 𝑡(0,1),𝑖=1,2.

Proof. First we will show that there exists a solution 𝑢2 to (4.1) with 𝑢2(𝑡)>0 for 𝑡(0,1) and 𝑟<𝑢2<𝑅2. Let Ω1={𝑢𝐸𝑢<𝑟},Ω2=𝑢𝐸𝑢<𝑅2.(4.11) We now show 𝐴𝑢<𝑢for𝐾𝜕Ω1.(4.12) To see this, let 𝑢𝐾𝜕Ω1. Then 𝑢=||𝑢||[0,1]=𝑟 and 𝑢(𝑡)(𝑡𝛼2(1𝑡)2/(𝛼1))𝑟 for 𝑡[0,1]. So for 𝑡[0,1], we have (𝐴𝑢)(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠𝜇10[𝑔](𝛼1)𝑞(𝑠)𝑎(𝑠)(𝑢(s))+(𝑢(s))𝑑𝑠=𝜇10(𝛼1)𝑞(𝑠)𝑎(𝑠)𝑔(𝑢(𝑠))1+(𝑢(𝑠))𝑔(𝑢(𝑠))𝑑𝑠𝜇10𝑠(𝛼1)𝑞(𝑠)𝑎(𝑠)𝑔𝛼2(1𝑠)2𝑟𝛼11+(r)𝑔(𝑟)𝑑𝑠𝐾0𝑔𝑟𝛼11+(𝑟)𝜇𝑔(𝑟)10𝑠(𝛼1)𝑞(𝑠)𝑎(𝑠)𝑔𝛼2(1𝑠)2𝑑𝑠=𝑎0𝐾20𝑔1[].𝛼1𝑔(𝑟)+(𝑟)(4.13) This together with (4.7) yields 𝐴𝑢=𝐴𝑢[0,1]<𝑟=𝑢,(4.14) so (4.12) is satisfied.
Next we show
𝐴𝑢>𝑢for𝐾𝜕Ω2.(4.15) To see this, let 𝑢𝐾𝜕Ω2 so 𝑢=𝑢[0,1]=𝑅2, and let 𝑢(𝑡)(𝑡𝛼2(1𝑡)2/(𝛼1))𝑅2 for 𝑡[0,1].
We have
(𝐴𝑢)(𝜎)=𝜇10𝐺(𝜎,𝑠)𝑎(𝑠)𝑓(𝑠,𝑢(𝑠))𝑑𝑠𝜇𝜃1𝜃𝐺𝑔(𝜎,𝑠)𝑎(𝑠)1(𝑢(s))+1(𝑢(s))𝑑𝑠=𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)𝑔1(𝑢(𝑠))1+1(𝑢(𝑠))𝑔1(𝑢(𝑠))𝑑𝑠𝑔1𝑅2𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)1+1𝑠𝛼2(1𝑠)2𝑅/(𝛼1)2𝑔1𝑠𝛼2(1𝑠)2𝑅/(𝛼1)2𝑑𝑠𝑔1𝑅2𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)1+1(𝜃𝛼/(𝛼1))𝑅2𝑔1(𝜃𝛼/(𝛼1))𝑅2𝑑𝑠.(4.16) This together with (4.9) yields (𝐴𝑢)(𝜎)>𝑅2=𝑢.(4.17) Thus ||𝐴𝑢||>||𝑢||, so (4.15) is held.
Now Theorem 2.5 implies that 𝐴 has a fixed-point 𝑢2𝐾(Ω2Ω1), that is, 𝑟𝑢2=𝑢2[0,1]𝑅 and 𝑢2(𝑡)𝑞(𝑡)𝑟 for 𝑡[0,1]. It follows from (4.12) and (4.15) that 𝑢2𝑟,𝑢2𝑅2, so we have 𝑟<||𝑢2||<𝑅2.
Similarly, if we put
Ω1=𝑢𝐸𝑢<𝑅1,Ω2={𝑢𝐸𝑢<𝑟},(4.18) we can show that there exists a solution 𝑢1 to (4.1) with 𝑢1(𝑡)>0 for 𝑡(0,1) and 𝑅1<||𝑢1||<𝑟.
This completes the proof of Theorem 4.1.

Similar to the proof of Theorem 4.1, we have the following result.

Theorem 4.2. Suppose that (4.2)–(4.8) hold. In addition suppose 0<𝑅1𝑅<𝑟𝑤𝑖𝑡1𝑔1(𝜃𝛼/(𝛼1))𝑅1𝑔1𝑅1𝑔1(𝜃𝛼/(𝛼1))𝑅1+𝑔1𝑅11(𝜃𝛼/(𝛼1))𝑅1<𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑞(𝑠)𝑑𝑠.(4.19) Then (4.1) has a nonnegative solution 𝑢1 with 𝑅1<𝑢1<𝑟 and 𝑢1(𝑡)>0 for 𝑡(0,1).

Remark 4.3. If in (4.19) we have 𝑅1>𝑟, then (4.1) a nonnegative solution 𝑢2 with 𝑟<𝑢2<𝑅2 and 𝑢2(𝑡)>0 for 𝑡(0,1).
It is easy to use Theorem 4.2 and Remark 4.3 to write theorems which guarantee the existence of more than two solutions to (4.1). We state one such result.

Theorem 4.4. Suppose that (4.2)–(4.6) and (4.8) hold. Assume that 𝑚{1,2,} and constants 𝑅𝑖,𝑟𝑖(𝑖=1,,𝑚), with 𝑟1>𝑏0, and 0<𝑅1<𝑟1<𝑅2<𝑟2<<𝑅𝑚<𝑟𝑚.(4.20) In addition suppose for each 𝑖=1,,𝑚 that 𝑟𝑖𝑔𝑟𝑖𝑟+𝑖>𝐾20𝑎0𝑔1,𝛼1(4.21) and 𝑅𝑖𝑔1(𝜃𝛼/(𝛼1))𝑅𝑖𝑔1𝑅𝑖𝑔1(𝜃𝛼/(𝛼1))𝑅𝑖+𝑔1𝑅𝑖1(𝜃𝛼/(𝛼1))𝑅𝑖<𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)𝑑𝑠(4.22) hold. Then (4.1) has nonnegative solutions 𝑦1,,𝑦𝑚 with 𝑦𝑖(𝑡)>0 for 𝑡(0,1).

Example 4.5. Consider the boundary value problem 𝐃𝛼0+𝑢𝑢(𝑡)=𝜎𝑎(𝑡)+𝑢𝑏(𝑡),𝑡(0,1),3<𝛼4,𝑢(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,0<𝑎<1<𝑏,(4.23) where 𝜎(0,𝜎0) is such that 𝜎012𝑎1,(4.24) here 𝑎1=(𝛼1)(𝛼2)Γ(𝛼)10𝑠𝛼2(1𝑠)2𝑠𝛼2(1𝑠)2𝛼𝑑𝑠=10𝑠(𝛼2)(1𝑎)(1𝑠)2(1𝑎)𝑑𝑠<.(4.25) Then (4.23) has two solutions 𝑢1,𝑢2 with 𝑢1(𝑡)>0,𝑢2(𝑡)>0 for 𝑡(0,1),𝑖=1,2.
To see this we will apply Theorem 4.1 with (here 0<𝑅1<1<𝑅2 will be chosen below)
𝑔(𝑢)=𝑔1(𝑢)=𝑢𝑎,(𝑢)=1(𝑢)=𝑢𝑏,𝑎(𝑡)=𝜎,𝐾01=1,𝜃=4.(4.26) Clearly (4.2)–(4.6) and (4.8) hold, and 𝑎0=(𝜎𝑎1/(𝛼1)𝑎). Now (4.7) holds with 𝑟=1 since 𝑟𝑔=1(𝑟)+(𝑟)2𝑎1𝜎0>𝐾20𝑎0(𝛼1)𝑎=𝐾20𝑎0𝑔1𝛼1.(4.27) Finally notice (4.9) is satisfied for 𝑅1 small and 𝑅2 large since 𝑅𝑖𝑔1𝑅𝑖1+1(𝜃𝛼/𝛼1)𝑅𝑖/g1(𝜃𝛼/𝛼1)𝑅𝑖=𝑅𝑖1+𝑎1+(𝛼1)(𝑎+𝑏)𝜃𝛼(𝑎+𝑏)𝑅𝑖𝑎+𝑏0,(4.28) as 𝑅10,𝑅2, since 𝑏>1. Thus all the conditions of Theorem 4.1 are satisfied so existence is guaranteed.

5. Singular Semipositone Problems

In this section we present a new result for the singular semipositone problem: 𝐃𝛼0+𝑢𝑢(𝑡)=𝜇𝑎(𝑡)𝑓(𝑡,𝑢(𝑡)),0<𝑡<1,3<𝛼4,(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,(5.1) where 𝜇>0 and nonlinearity 𝑓 may be singular at 𝑢=0.

Before we prove our main result, we first state a result.

Lemma 5.1. Suppose 𝑎𝐿1[0,1] with 𝑎>0 on (0,1). Then the boundary value problem, 𝐃𝛼0+𝑢𝑢(𝑡)=𝑎(𝑡)𝑒(𝑡),0<𝑡<1,3<𝛼4,(0)=𝑢(1)=𝑢(0)=𝑢(1)=0,(5.2) has a solution 𝑤 with 𝑡𝑤(𝑡)𝛼2(1𝑡)2𝐶𝛼10[]for𝑡0,1,(5.3) here 𝐶0=(𝛼1)2(𝛼2)Γ(𝛼)10𝑎(𝑠)𝑒(𝑠)𝑑𝑠.(5.4) In fact, from Lemma 3.1, (5.2) has solution 𝑤(𝑡)=10𝐺(𝑡,𝑠)𝑎(𝑠)𝑒(𝑠)𝑑𝑠.(5.5) According to Lemma 3.2, we have 𝑤(𝑡)10(𝛼1)(𝛼2)𝑡𝛼2(1𝑡)2𝑡Γ(𝛼)𝑎(𝑠)𝑒(𝑠)𝑑𝑠=𝛼2(1𝑡)2𝐶𝛼10.(5.6) The above Lemma together with Theorem 2.5 establish our main result.

Theorem 5.2. Suppose that the following conditions are satisfied. 𝑞𝐶(0,1)𝐿1[]0,1𝑤𝑖𝑡𝑞>𝑜𝑛(0,1).(5.7)[]𝑓0,1×(0,)𝐑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑎𝑛𝑑𝑡𝑒𝑟𝑒𝑒𝑥𝑖𝑠𝑡𝑠𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑒𝐶((0,1),(0,+))𝑤𝑖𝑡𝑓(𝑡,𝑢)+𝑒(𝑡)𝑓𝑜𝑟(𝑡,𝑢)(0,1)×(0,),(5.8)𝑓[][(𝑡,𝑢)=𝑓(𝑡,𝑢)+𝑒(𝑡)𝑔(𝑢)+(𝑢)𝑜𝑛0,1×(0,)𝑤𝑖𝑡𝑔>0𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑎𝑛𝑑𝑛𝑜𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑜𝑛(0,),0𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑜𝑛0,)𝑎𝑛𝑑𝑔𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑜𝑛(0,),(5.9)𝐾0𝑤𝑖𝑡𝑔(𝑥𝑦)𝐾0𝑔(𝑥)𝑔(𝑦)𝑥>0,𝑦>0,(5.10)𝑎0=10𝑠𝐺(𝜎,𝑠)𝑞(𝑠)𝑔𝛼2(1𝑠)2𝑑𝑠<,(5.11)𝑟>𝜇𝐶0𝑟𝑤𝑖𝑡𝑔𝑟𝜇𝐶0/(𝛼1){1+((𝑟)/𝑔(𝑟))}𝜇𝐾0𝑎0,(5.12)1𝑇𝑒𝑟𝑒𝑒𝑥𝑖𝑠𝑡𝑠0<𝜃<2(𝑐𝑜𝑜𝑠𝑒𝑎𝑛𝑑𝑓𝑖𝑥𝑖𝑡)𝑎𝑛𝑑𝑎𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠,𝑛𝑜𝑛𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑔1(0,)(0,),𝑎𝑛𝑑𝑎𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1[0,)(0,)𝑤𝑖𝑡1𝑔1𝑛𝑜𝑛𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑜𝑛(0,)𝑎𝑛𝑑𝑤𝑖𝑡𝑓(𝑡,𝑢)+𝑒(𝑡)𝑔1(𝑢)+1[](𝑢)𝑓𝑜𝑟(𝑡,𝑢)𝜃,1𝜃×(0,),(5.13)𝑎𝑛𝑑𝑅>𝑟𝑤𝑖𝑡𝑅𝑔1((𝜖𝜃𝛼/(𝛼1))𝑅)𝑔1(𝑅)𝑔1((𝜖𝜃𝛼/(𝛼1))𝑅)+𝑔1(𝑅)1((𝜖𝜃𝛼/(𝛼1))𝑅)𝜇𝜃1𝜃𝐺(𝜎,𝑠)𝑞(𝑠)𝑑𝑠,(5.14) here 𝜖>0 is any constant (choose and fix it) so that 1(𝜇𝐶0/𝑅)𝜖 (note 𝜖 exists since 𝑅>𝑟>𝜇𝐶0 in fact we can have 𝜖=1(𝜇𝐶0/𝑟) ) and 𝐺(𝑡,𝑠) is Green's function and 𝜃1𝜃𝐺(𝜎,𝑠)𝑎(𝑠)𝑑𝑠=sup𝑡[0,1]𝜃1𝜃𝐺(𝑡,𝑠)𝑎(𝑠)𝑑𝑠.(5.15) Then (5.1) has a solution 𝑦𝐶[0,1]𝐶2(0,1) with 𝑦(𝑡)>0 for 𝑡(0,1).

Proof. To show that (5.1) has a nonnegative solution we will look at the boundary value problem 𝐃𝛼0+𝑦(𝑡)=𝜇𝑞(𝑡)𝑓(𝑡,𝑦(𝑡)𝜙(𝑡)),0<𝑡<1,3<𝛼4,𝑦(0)=𝑦(1)=𝑦(0)=𝑦(1)=0,(5.16) where 𝜙(𝑡)=𝜇𝑀𝑤(𝑡),0𝑡1,(5.17) (𝑤 is as in Lemma 5.1).
We will show, using Theorem 2.5, that there exists a solution 𝑦1 to (5.16) with 𝑦1(𝑡)>𝜙(𝑡) for 𝑡(0,1). If this is true then 𝑢(𝑡)=𝑦1(𝑡)𝜙(𝑡),0𝑡1 is a nonnegative solution (positive on (0,1)) of (5.1), since
𝐃𝛼0+𝑢(𝑡)=𝐃𝛼0+𝑦1(𝑡)𝐃𝛼0+𝜙(𝑡)=𝜇𝑞(𝑡)𝑓𝑡,𝑦1𝑓(𝑡)𝜙(𝑡)+𝜇𝑞(𝑡)𝑒(𝑡)=𝜇𝑞(𝑡)𝑡,𝑦1(𝑡)𝜙(𝑡)+𝑒(𝑡)+𝜇𝑞(𝑡)𝑒(𝑡)=𝜇𝑞(𝑡)𝑓𝑡,𝑦1(𝑡)𝜙(𝑡)=𝜇𝑞(𝑡)𝑓(𝑡,𝑢(𝑡)),0<𝑡<1.(5.18) As a result, we will concentrate our study on (5.16). Let 𝐸,𝐾 as in Section 2, and let Ω1={𝑢𝐸𝑢<𝑟},Ω2={𝑢𝐸𝑢<𝑅}.(5.19) Next let 𝐴𝐾(Ω2Ω1)𝐸  be defined by (𝐴𝑦)(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑞(𝑠)𝑓(𝑠,𝑦(𝑠)𝜙(𝑠))𝑑𝑠,0𝑡1.(5.20) In addition, standard argument shows that 𝐴(𝑃)𝑃 and 𝐴 is completely continuous.
We now show
𝐴𝑦𝑦for𝐾𝜕Ω1.(5.21) To see this, let 𝑦𝐾𝜕Ω1. Then 𝑦=𝑦[0,1]=𝑟 and 𝑦(𝑡)(𝑡𝛼2(1𝑡)2/(𝛼1))𝑟 for 𝑡[0,1]. Now for 𝑡(0,1), the Lemma 5.1 implies 𝑡𝑦(𝑡)𝜙(𝑡)𝛼2(1𝑡)2𝑡𝛼1𝑟𝜇𝛼2(1𝑡)2𝐶𝛼10𝑡𝛼2(1𝑡)2𝛼1𝑟𝜇𝐶0>0,(5.22) so for 𝑡[0,1] we have (𝐴𝑦)(𝑡)=𝜇10𝐺(𝑡,𝑠)𝑎(𝑠)𝑓(𝑠,𝑦(𝑠)𝜙(𝑠))𝑑𝑠𝜇10𝑞[𝑔](𝑠)𝑎(𝑠)(𝑦(𝑠)𝜙(𝑠))+(𝑦(𝑠)𝜙(𝑠))𝑑𝑠=𝜇10𝑞(𝑠)𝑎(𝑠)𝑔(𝑦(𝑠)𝜙(𝑠))1+(𝑦(𝑠)𝜙(𝑠))𝑔(𝑦(𝑠)𝜙(𝑠))𝑑𝑠𝜇10𝑠𝑞(𝑠)𝑎(𝑠)𝑔𝛼2(1𝑠)2𝛼1𝑟𝜇𝐶01+(𝑟)𝑔(𝑟)𝑑𝑠𝜇𝐾0𝑔𝑟𝜇𝐶0𝛼11+(𝑟)𝑔(𝑟)10𝑠𝑞(𝑠)𝑎(𝑠)𝑔𝛼2(1𝑠)2𝑑𝑠=𝜇𝐾0𝑎0𝑔𝑟𝜇𝐶0𝛼11+{𝑟}.𝑔{𝑟}(5.23) This together with (5.12) yields 𝐴𝑦=𝐴𝑦[0,1]𝑟=𝑦,(5.24) so (5.21) is satisfied.
Next we show
𝐴𝑦𝑦for𝐾𝜕Ω2.(5.25) To see this let 𝑦𝐾𝜕Ω2 so 𝑦=𝑦[0,1]=𝑅 and 𝑦(𝑡)(𝑡𝛼2(1𝑡)2/(𝛼1))𝑅 for 𝑡[0,1]. Also for 𝑡[0,1] we have 𝑡𝑦(𝑡)𝜙(𝑡)=𝑦(𝑡)𝜇𝑤(𝑡)𝛼2(1𝑡)2𝛼1𝑅𝜇𝐶0𝑡𝛼2(1𝑡)2𝑡𝛼1𝛼2(1𝑡)2𝑅𝛼11𝜇𝐶0𝑅𝜖𝑡𝛼2(1𝑡)2𝛼1𝑅.(5.26) As a result 𝑦(𝑡)𝜙(𝑡)𝜖𝜃𝛼[]𝛼1𝑅for𝑡𝜃,1𝜃.(5.27) We have (𝐴𝑦)(𝜎)=𝜇10𝐺(𝜎,𝑠)𝑞(𝑠)𝑓(𝑠,𝑦(𝑠)𝜙(𝑠))𝑑𝑠𝜇01𝜃𝐺𝑔(𝜎,𝑠)𝑞(𝑠)1(𝑦(𝑠)𝜙(𝑠))+1(𝑦(𝑠)𝜙(𝑠))𝑑𝑠=𝜇01𝜃𝐺(𝜎,𝑠)𝑞(𝑠)𝑔1(𝑦(𝑠)𝜙(𝑠))1+1(𝑦(𝑠)𝜙(𝑠))𝑔1(𝑦(𝑠)𝜙(𝑠))𝑑𝑠𝜇𝑔1(𝑅)01𝜃𝐺(𝜎,𝑠)𝑞(𝑠)1+1((𝜖𝜃𝛼/(𝛼1))𝑅)𝑔1((𝜖𝜃𝛼/(𝛼1))𝑅)𝑑𝑠.(5.28) This together with (5.14) yields (𝐴𝑦)(𝜎)𝑅=𝑦.(5.29) Thus 𝐴𝑦𝑦, so (5.25) is held.
Now Theorem 2.5 implies that 𝐴 has a fixed-point 𝑦𝐾(Ω2Ω1), that is, 𝑟𝑦=𝑦[0.1]𝑅 and 𝑦(𝑡)𝑡𝛼2(1𝑡)2𝑟 for 𝑡[0,1]. Thus 𝑦(𝑡) is a solution of (5.16) with 𝑦(𝑡)>𝜙(𝑡) for 𝑡(0,1). Thus (5.1) has a positive solution 𝑢(𝑡)=𝑦(𝑡)𝜙(𝑡)> for 𝑡(0,1).

Example 5.3. Consider the boundary value problem 𝐃𝛼0+𝑦𝑦(𝑡)=𝜇𝑎(𝑡)+𝑦𝑏(𝑡)1,0<𝑡<1,3<𝛼4,𝑦(0)=𝑦(1)=𝑦(0)=𝑦(1)=0,0<𝑎<1<𝑏,(5.30) where 𝜇(0,𝜇0) is such that (𝛼1)2(𝛼2)𝜇02Γ(𝛼)+(𝛼1)2𝜇0𝑎01/𝛼1,(5.31) here 𝑎0=10𝑠𝑞(𝑠)𝑎(𝑠)𝑔𝛼2(1𝑠)2𝑑𝑠=10𝑠1𝑎(𝛼1)(1𝑠)(𝛼1)𝑑𝑠<.(5.32)
Then (5.30) has a solution 𝑦 with 𝑦(𝑡)>0 for 𝑡(0,1).
To see this we will apply Theorem 5.2 with (here 𝑅>1 will be chosen later, in fact here we choose 𝑅>1 so that 𝜖=1/2 works, i.e., we choose 𝑅 so that 1(𝜇/(2Γ(𝛼)𝑅))1/2),
𝑔(𝑦)=𝑔1(𝑦)=𝑦𝑎,(𝑦)=1(𝑦)=𝑦𝑏,𝑎(𝑡)=1,𝑒(𝑡)=𝑡1/2,a𝐾01=1,𝜖=21,𝜃=4,𝐶0=(𝛼1)2(𝛼2)Γ(𝛼)10𝑠1/2𝑑𝑠=(𝛼2)2(𝛼2).2Γ(𝛼)(5.33) Clearly (5.7)–(5.11) and (5.13) hold. Now (5.12) holds with 𝑟=1 since 𝜇𝐾0𝑎0=𝜇𝑎0<𝜇0𝑎0121𝜇0𝐶0𝛼1𝑎121𝜇𝑐0𝛼1𝑎=𝑟{1+((𝑟)/𝑔(𝑟))}𝑔𝑟𝜇𝑀𝐶0,/(𝛼1)(5.34) from (5.31). Finally notice (5.14) is satisfied for 𝑅 large since 𝑅𝑔1(𝜖𝜃𝛼/(𝛼1))𝑅𝑔1(𝑅)𝑔1((𝜖𝜃𝛼/(𝛼1))𝑅)+𝑔1(𝑅)1((𝜖𝜃𝛼=𝑅/(𝛼1))𝑅)1+𝑎1+(𝛼1)(𝑎+𝑏)𝜖𝜃𝛼𝑎+𝑏𝑅𝑎+𝑏0,(5.35) as 𝑅, since 𝑏>1. Thus all the conditions of Theorem 5.2 are satisfied so existence is guaranteed.

Acknowledgments

This paper is supported by Key Subject of Chinese Ministry of Education (no. 109051) and Scientific Research Fund of Heilongjiang Provincial Education Department (no. 11544032).