Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2009, Article ID 582732, 16 pages
http://dx.doi.org/10.1155/2009/582732
Research Article

Modeling of the Radial Heat Flow and Cooling Processes in a Deep Ultraviolet Ne-CuBr Laser

1Department of Physics, Technical University of Plovdiv, 25 Tzanko Djusstabanov Street, 4000 Plovdiv, Bulgaria
2Department of Applied Mathematics and Modeling, Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Street, 4000 Plovdiv, Bulgaria
3Metal Vapour Lasers Department, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shaussee Boulevard, 1784 Sofia, Bulgaria

Received 17 April 2009; Accepted 3 August 2009

Academic Editor: Saad A Ragab

Copyright © 2009 Iliycho Petkov Iliev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu+ in Ne-CuBr pulse longitudinal discharge,” IEEE Journal of Quantum Electronics, vol. 35, pp. 1799–1804, 1999. View at Publisher · View at Google Scholar
  2. N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the active zone diameter on the UV ion Ne-CuBr laser performance,” IEEE Journal of Quantum Electronics, vol. 37, pp. 1538–1546, 2001. View at Publisher · View at Google Scholar
  3. K. Beev, K. Temelkov, N. Vuchkov et al., “Optical properties of polymer films for near UV recording,” Journal of Optoelectronics and Advanced Materials, vol. 7, pp. 1315–1318, 2005. View at Google Scholar
  4. M. Ilieva, V. Tsakova, N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV copper ion laser treatment of poly-3,4- ethylenedioxythiophene,” Journal of Optoelectronics and Advanced Materials, vol. 9, pp. 303–306, 2007. View at Google Scholar
  5. N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE Journal of Quantum Electronics, vol. 41, pp. 62–65, 2005. View at Publisher · View at Google Scholar
  6. N. Vuchkov, “High discharge tube resource of the UV Cu+ Ne-CuBr laser and some applications,” in New Developments in Lasers & Electro-Optics Research, W. T. Arkin, Ed., pp. 41–47, Nova Science, Lancaster, UK, 2006. View at Google Scholar
  7. Yu. G. Gradoboev, Yu. V. Gulyaev, M. A. Kazaryan et al., “UV radiation source based on a copper vapour laser with acousto-optically controlled spectral and temporal parameters,” Quantum Electronics, vol. 34, pp. 1133–1137, 2004. View at Publisher · View at Google Scholar
  8. Y. P. Raizer, M. N. Shneide, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges, CRC Press, New York, NY, USA, 1995.
  9. M. J. Kushner and B. E. Warner, “Large-bore copper-vapor lasers: kinetics and scaling issues,” Applied Physics, vol. 54, pp. 2970–2982, 1983. View at Publisher · View at Google Scholar
  10. A. M. Boichenko, G. S. Evtushenko, O. V. Zhdaneev, and S. I. Yakovlenko, “Theoretical analysis of the mechanisms of influence of Hydrogen additions on the emission parameters of a copper vapour laser,” Quantum Electronics, vol. 33, pp. 1047–1058, 2003. View at Publisher · View at Google Scholar
  11. B. A. Ghani and M. Hammadi, “Modeling the plasma kinetics mechanisms of CuBr laser with neon–hydrogen additives,” Optics & Laser Technology, vol. 38, no. 2, pp. 67–76, 2006. View at Google Scholar
  12. R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1876–1895, 1994. View at Publisher · View at Google Scholar
  13. R. J. Carman, R. P. Mildren, M. J. Withford, D. J. W. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl + H2 admixtures,” IEEE Journal of Quantum Electronics, vol. 36, no. 4, pp. 438–449, 2000. View at Publisher · View at Google Scholar
  14. B. L. Pan, G. Chen, B. N. Mao, and Z. X. Yao, “Kinetic process of UV Cu+ laser in Ne-CuBr longitudinal pulsed discharge,” Optics Express, vol. 14, no. 19, pp. 8644–8653, 2006. View at Publisher · View at Google Scholar
  15. D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of the CuBr laser with hidrogen additives,” IEEE Journal of Quantum Electronics, vol. 24, pp. 1926–1935, 1988. View at Publisher · View at Google Scholar
  16. K. A. Temelkov, N. K. Vuchkov, B. L. Pan, N. V. Sabotinov, B. Ivanov, and L. Lyutov, “Strontium bromide vapor laser excited by nanosecond pulsed longitudinal discharge,” in 14th International School on Quantum Electronics: Laser Physics and Applications, vol. 6604 of Proceedings of SPIE, pp. 1–5, March 2007.
  17. I. P. Iliev, S. G. Gocheva-Ilieva, and N. V. Sabotinov, “Analytic study of the temperature profile in a copper bromide laser,” Quantum Electronics, vol. 38, pp. 338–342, 2008. View at Publisher · View at Google Scholar
  18. S. G. Gocheva-Ilieva, I. P. Iliev, K. A. Temelkov, N. K. Vuchkov, and N. V. Sabotinov, “Analytical model of the temperature in UV Cu+ CuBr laser,” in Applications of Mathematics in Engineering and Economics, M. D. Todorov, Ed., vol. CP1067, pp. 114–121, American Institute of Physics, Melville, NJ, USA, 2008. View at Google Scholar
  19. N. K. Vuchkov, D. N. Astadjov, and N. V. Sabotinov, “Influence of the excitation circuits on the CuBr laser performance,” IEEE Journal of Quantum Electronics, vol. 30, no. 3, pp. 750–758, 1994. View at Publisher · View at Google Scholar
  20. M. N. Özişik, Heat Transfer. A Basic Approach, McGraw-Hill, Boston, Mass, USA, 1985.
  21. V. A. Milchev, D. Z. Uzunov, V. Y. Jordanov, and D. K. Palov, Heating Technology, Tehnika, Sofia, Bulgaria, 1989.
  22. M. Oprev, Tz. Batov, and D. Uzunov, Heating Technology, Tehnika, Sofia, Bulgaria, 1978.
  23. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, New York, NY, USA, 9th edition, 1964. View at MathSciNet
  24. P. Blau, “Impedance matching and electric field penetration in metal vapour lasers,” in Pulsed Metal Vapour Lasers, E. Little and N. V. Sabotinov, Eds., vol. 5 of Nato Science Partnership Sub-Series: 1, pp. 215–220, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. View at Google Scholar
  25. http://reference.wolfram.com/mathematica/guide/Mathematica.html.
  26. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, UK, 1966. View at MathSciNet