Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2009, Article ID 897570, 11 pages
http://dx.doi.org/10.1155/2009/897570
Research Article

Gravitational Capture of Asteroids by Gas Drag

FE-Guaratinguetá, Departamento de Matemática, UNESP—Universidade Estadual Paulista, 12.516-410 SP, Brazil

Received 30 July 2009; Revised 6 November 2009; Accepted 1 December 2009

Academic Editor: Silvia Maria Giuliatti Winter

Copyright © 2009 E. Vieira Neto and O. C. Winter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Pollack, J. A. Burns, and M. E. Tauber, “Gas drag in primordial circumplanetary envelopes: a mechanism for satellite capture,” Icarus, vol. 37, no. 3, pp. 587–611, 1979. View at Google Scholar · View at Scopus
  2. B. J. Gladman, P. D. Nicholson, J. A. Burns et al., “Discovery of two distant irregular moons of Uranus,” Nature, vol. 392, no. 6679, pp. 897–899, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Jewitt and N. Haghighipour, “Irregular satellites of the planets: products of capture in the early solar system,” Annual Review of Astronomy and Astrophysics, vol. 45, pp. 261–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Tanikawa, “Impossibility of the capture of retrograde satellites in the restricted three-body problem,” Celestial Mechanics, vol. 29, no. 4, pp. 367–402, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. E. Vieira Neto and O. C. Winter, “Time analysis for temporary gravitational capture: satellites of Uranus,” Astronomical Journal, vol. 122, no. 1, pp. 440–448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. de Oliveira, O. C. Winter, E. Vieira Neto, and G. de Felipe, “Irregular satellites of Jupiter: a study of the capture direction,” Earth, Moon and Planets, vol. 100, no. 3-4, pp. 233–239, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. T. A. Heppenheimer and C. Porco, “New contributions to the problem of capture,” Icarus, vol. 30, no. 2, pp. 385–401, 1977. View at Google Scholar · View at Scopus
  8. E. Vieira Neto, O. C. Winter, and T. Yokoyama, “The effect of Jupiter's mass growth on satellite capture Retrograde case,” Astronomy and Astrophysics, vol. 414, no. 2, pp. 727–734, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Vieira Neto, O. C. Winter, and T. Yokoyama, “Effect of Jupiter's mass growth on satellite capture the prograde case,” Astronomy and Astrophysics, vol. 452, no. 3, pp. 1091–1097, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Colombo and F. A. Franklin, “On the formation of the outer satellite groups of Jupiter,” Icarus, vol. 15, no. 2, pp. 186–189, 1971. View at Publisher · View at Google Scholar · View at Scopus
  11. C. B. Agnor and D. P. Hamilton, “Neptune's capture of its moon Triton in a binary-planet gravitational encounter,” Nature, vol. 441, no. 7090, pp. 192–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. S. Gaspar, O. C. Winter, and E. Vieira Neto, “Irregular satellites of Jupiter: capture congurations of binary asteroids,” submitted to Monthly Notices of the Royal Astronomical Society.
  13. J. I. Lunine and D. J. Stevenson, “Formation of the Galiean satellites in a gaseous nebula,” Icarus, vol. 52, pp. 14–39, 1982. View at Google Scholar
  14. M. Ćuk and J. A. Burns, “Gas-drag-assisted capture of Himaila's family,” Icarus, vol. 167, pp. 369–381, 2004. View at Google Scholar
  15. J. B. Pollack, O. Hubickyj, P. Bodenheimer, J. J. Lissauer, M. Podolak, and Y. Greenzweig, “Formation of the giant planets by concurrent accreation of solid and gas,” Icarus, vol. 124, pp. 62–85, 1996. View at Google Scholar
  16. E. Vieira Neto, O. C. Winter, and C. Melo, “The use of the two-body energy to study problems of escape/capture,” in Dynamics of Populations of Planetary Systems, Z. Knezevic and A. Milani, Eds., Proceedings IAU Colloquium, no. 197, pp. 439–444, Cambridge University Press, Cambridge, UK, 2005. View at Google Scholar
  17. E. Everhart, “An efficient integrator that uses Gauss-Radau spacings,” in Dynamics of Comets: Their Origin and Evolution, A. Carusi and G. B. Valsecchi, Eds., vol. 115 of Proceedings of IAU Colloquium, no. 83, pp. 185–202, Astrophysics and Space Science Library, Dordrecht, The Netherlands, 1985. View at Google Scholar
  18. C. D. Murray and S. F. Dermott, Solar System Dynamics, Cambridge University Press, Cambridge, UK, 1999.
  19. J. Wisdom, “The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem,” Astronomical Journal, vol. 85, pp. 1122–1133, 1980. View at Publisher · View at Google Scholar
  20. M. Podolak, W. B. Hubbard, and J. B. Pollack, “Gaseous acreation and the formation of giant planets,” in Protostars and Planets III, E. H. Levy and J. I. Lunini, Eds., pp. 1109–1147, University of Arizona Press, Tucson, Ariz, USA, 1993. View at Google Scholar
  21. I. Adashi, C. Hayashi, and K. Nakazawa, “The gas drag effect on the elliptic motion of a solid body in the primordial nebula,” Progress in Theorical Physics, vol. 56, no. 3, pp. 1756–1771, 1976. View at Google Scholar
  22. S. J. Weidenschilling, “Planetesimals from Stardust,” in From Stardust to Planetesimals, Y. J. Pendleton and A. G. G. M. Tielens, Eds., vol. 122 of ASP Conference Series, p. 281, Astronomical Society of the Pacific, Santa Clara, Calif, USA, 1997. View at Google Scholar