Abstract

Mathematical model in oil extraction by gas-lift method for the case when the reciprocal value of well's depth represents a small parameter is considered. Problem of optimal mode construction (i.e., construction of optimal program trajectories and controls) is reduced to the linear-quadratic optimal control problem with a small parameter. Analytic formulae for determining the solutions at the first-order approximation with respect to the small parameter are obtained. Comparison of the obtained results with known ones on a specific example is provided, which makes it, in particular, possible to use obtained results in realizations of oil extraction problems by gas-lift method.

1. Introduction

It is known [1โ€“3] that the gas-lift technique of exploitation of oil wells is widely used when the gushing method does not work for the reason of insufficiency in pressure. The essence of the gas-lift method consists of the fact that by the mean of energy of injected underground gas it is possible to lift fluid to the surface.

While the gas-lift method is widely used in oil extraction for a sufficiently long period of time, construction of an adequate mathematical model is rather an actual problem. Mathematical model describing the oil lifting process in pump-compressor tubes is described in [4].

In [4, 5], using this model, an optimal control problem for gas-lift process is formulated, where the pressure and volume of the injected gas is used as a control parameter. In the same papers, the method of straight lines is used to reduce the optimal control problem to the linear-quadratic optimal control problem (LQOCP). It should be noted that, when the depth of a well is large, in order to obtain sufficiently accurate results it is necessary to divide this distance into large number of relatively small segments. The latter, in its turn increases the dimensions of the system and, consequently, results in higher volume of computations to solve such problems. Thus, generally speaking, solution of these problems yields higher approximation and calculation errors.

Therefore, it seems quite rational to develop other solution methods with lower computational complicatedness [6โ€“8]. One of the methods applicable to the considered problem for the case when the reciprocal value of wellโ€™s depth represents a small parameter is the asymptotic method described in [9].

In the present paper, using the method of straight lines, the mathematical model of the gas-lift process is represented as a system of partial differential equations of hyperbolic type. In a particular case, we arrive to LQOCP for a system of ordinary differential equations containing a small parameter. Applying the algorithm introduced in [10, 11], the solution to LQOCP is obtained as a function of the small parameter. Consequently, as in [6, 9], at the first approximation, analytic formulas for the volume of injected gas (control) and production level (trajectories) are obtained. As it supposed, the presented approach will reduce substantially the amount of required computations.

2. Mathematical Formulation of the Problem

As in [4], mathematical model of gas-fluid mixture flow in pipes is described by the system of hyperbolic-type partial differential equations: ๐œ•๐‘ƒ๐‘๐œ•๐‘ก=โˆ’2๐น๐œ•๐‘„๐œ•๐‘ฅ๐œ•๐‘„๐œ•๐‘ก=โˆ’๐น๐œ•๐‘ƒ[]๐œ•๐‘ฅโˆ’2๐‘Ž๐‘„๐‘กโ‰ฅ0,๐‘ฅโˆˆ0,2๐ฟ,(2.1) which for ๐‘ฅ=๐‘ง/2๐ฟand ๐œ€=1/2๐ฟ can be written as๐œ•๐‘ƒ๐‘๐œ•๐‘ก=โˆ’2๐น๐œ•๐‘„๐œ€๐œ•๐‘ง๐œ•๐‘„๐œ•๐‘ก=โˆ’๐น๐œ•๐‘ƒ๐œ•๐‘ง๐œ€โˆ’2๐‘Ž๐‘„,๐‘งโˆˆ(0,1),(2.2) with appropriate boundary and initial conditions๐‘ƒ(๐‘ง,0)=๐‘ƒ0(๐‘ง),๐‘„(๐‘ง,0)=๐‘„0(๐‘ง),๐‘ƒ(0,๐‘ก)=๐‘ƒ0(๐‘ก),๐‘„(0,๐‘ก)=๐‘„0(๐‘ก),๐‘ƒ(๐ฟ+0,๐‘ก)=๐‘ƒ(๐ฟโˆ’0,๐‘ก)+๐‘ƒ๐‘๐‘™(๐‘ก),๐‘„(๐ฟ+0,๐‘ก)=๐‘„(๐ฟโˆ’0,๐‘ก)+๐‘„๐‘๐‘™(๐‘ก).(2.3) It is required to determine a control๎€บ๐‘ƒ๐‘ˆ(๐‘ก)=0(๐‘ก),๐‘„0๎€ป(๐‘ก)๎…ž(2.4) minimizing the functional1๐ฝ=2๐›ผ๎€ท๐‘„(2๐ฟ,๐‘‡)โˆ’๐‘„deb๎€ธ2+12๎€œ๐‘‡0๐‘ˆ๎…ž(๐‘ก)๐‘…๐‘ˆ(๐‘ก)๐‘‘๐‘ก,(2.5) where ๐‘ƒ is pressure, ๐‘„ is gas-fluid mixture volume and๐‘„debis the desired yield.

Applying the so-called method of straight lines to (2.2) and taking ๐‘™=1/๐‘, we obtain๐‘‘๐‘ƒ๐‘˜๐‘๐‘‘๐‘ก=โˆ’2๐œ€๎€ท๐‘„๐นโ‹…๐‘™๐‘˜โˆ’๐‘„๐‘˜โˆ’1๎€ธ,๐‘‘๐‘„๐‘˜๐‘‘๐‘ก=โˆ’๐น๐œ€๐‘™๎€ท๐‘ƒ๐‘˜โˆ’๐‘ƒ๐‘˜โˆ’1๎€ธโˆ’2๐‘Ž๐‘„๐‘˜.(2.6) Note that for ๐‘˜=๐‘+1 (2.6) can be written as ฬ‡๐‘ƒ๐‘+1๐‘=โˆ’22๐œ€๐น2๐‘™๐‘„๐‘+1+๐‘22๐œ€๐น2๐‘™๐‘„๐‘+๐‘2๐œ€๐น2๐‘™๐‘„๐‘๐‘™,ฬ‡๐‘„๐‘+1๐น=โˆ’2๐œ€๐‘™๐‘ƒ๐‘+1+๐น2๐œ€๐‘™๐‘ƒ๐‘โˆ’2๐‘Ž2๐‘„๐‘+1+๐น2๐œ€๐‘™๐‘ƒ๐‘๐‘™,(2.7) where ๐‘„๐‘๐‘™,๐‘ƒ๐‘๐‘™ denote gas-fluid outlay (yield) and pressure at the bottom of a well, respectively. As in [10], a linear-quadratic optimal control problem is formulated for this system. It is required to find ๐‘ฅ,๐‘ข satisfying the equation๎€ท๐ดฬ‡๐‘ฅ=0+๐ด1๐œ€๎€ธ๐‘ฅ+๐ต๐œ€๐‘ข+๐ถ๐œ€(2.8) with initial condition๐‘ฅ(0)=๐‘ฅ0(2.9) such that the value of the functional1๐ฝ=2๎€ท๐‘ฅ(๐‘‡)โˆ’๐‘ฅ๎€ธ๎…ž๐พ๎€ท๐‘ฅ(๐‘‡)โˆ’๐‘ฅ๎€ธ+12๎€œ๐‘‡0๐‘ข๎…ž๐‘…๐‘ข๐‘‘๐‘ก(2.10) is minimized.

Here, ๐ด1=โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๐ด11๐ด000โ‹ฏ0000โ‹ฏ000012๐ด1100โ‹ฏ0000โ‹ฏ00000๐ด12๐ด110โ‹ฏ0000โ‹ฏ000000๐ด12๐ด11โ‹ฏ0000โ‹ฏ0000โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ0000โ‹ฏ๐ด11000โ‹ฏ00000000โ‹ฏ๐ด12๐ด1100โ‹ฏ00000000โ‹ฏ0๐ด21๐ด220โ‹ฏ00000000โ‹ฏ00๐ด21๐ด22โ‹ฏ0000โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ0000โ‹ฏ0000โ‹ฏ๐ด220000000โ‹ฏ0000โ‹ฏ๐ด21๐ด22000000โ‹ฏ0000โ‹ฏ0๐ด21๐ด2200000โ‹ฏ0000โ‹ฏ00๐ด21๐ด22โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ๐ด,(2)0=โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ0000โ‹ฏ0000โ‹ฏ00000โˆ’2๐‘Ž100โ‹ฏ0000โ‹ฏ00000000โ‹ฏ0000โ‹ฏ0000000โˆ’2๐‘Ž1โ‹ฏ0000โ‹ฏ0000โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ0000โ‹ฏ0000โ‹ฏ00000000โ‹ฏ0โˆ’2๐‘Ž100โ‹ฏ00000000โ‹ฏ0000โ‹ฏ00000000โ‹ฏ000โˆ’2๐‘Ž2โ‹ฏ0000โ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏโ‹ฏ0000โ‹ฏ0000โ‹ฏ00000000โ‹ฏ0000โ‹ฏ0โˆ’2๐‘Ž2000000โ‹ฏ0000โ‹ฏ00000000โ‹ฏ0000โ‹ฏ000โˆ’2๐‘Ž2โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ,๐ด11=โŽกโŽขโŽขโŽขโŽฃ๐‘0โˆ’21๐น1๐‘™โˆ’๐น1๐‘™0โŽคโŽฅโŽฅโŽฅโŽฆ,๐ด12=โŽกโŽขโŽขโŽขโŽฃ0๐‘21๐น1๐‘™๐น1๐‘™0โŽคโŽฅโŽฅโŽฅโŽฆ,๐ด22=โŽกโŽขโŽขโŽขโŽฃ๐‘0โˆ’22๐น2๐‘™โˆ’๐น2๐‘™0โŽคโŽฅโŽฅโŽฅโŽฆ,๐ด21=โŽกโŽขโŽขโŽขโŽฃ0๐‘22๐น2๐‘™๐น2๐‘™0โŽคโŽฅโŽฅโŽฅโŽฆ,๎€บ๐‘ƒ๐‘ฅ=1,๐‘„1,๐‘ƒ2,๐‘„2,โ€ฆ,๐‘ƒ๐‘,๐‘„๐‘,โ€ฆ,๐‘ƒ2๐‘,๐‘„2๐‘๎€ป๎…ž,๐‘ฅ0=๎€บ๐‘ƒ01,๐‘„01,๐‘ƒ02,๐‘„02,โ€ฆ,๐‘ƒ0๐‘,๐‘„0๐‘,โ€ฆ,๐‘ƒ02๐‘,๐‘„02๐‘๎€ป๎…ž,๎‚ธ๐‘ƒ๐‘ข=0๐‘„0๎‚น,โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ0๐‘๐ต=21๐น1๐‘™๐น1๐‘™0โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ0๐‘00โ‹ฏโ‹ฏโ‹ฏโ‹ฏ000000,๐ถ=00โ‹ฏโ‹ฏ0022๐น2๐‘™๐น2๐‘™0โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ๎‚ธ๐‘ƒ00โ‹ฏโ‹ฏ00๐‘๐‘™๐‘„๐‘๐‘™๎‚น.(1) Let ๐‘…=๐‘…๐œ€. Then the corresponding Euler-Lagrange control problem can be written as๎‚ธฬ‡๐œ†๎‚น=๎ƒฌ๐ดฬ‡๐‘ฅ0+๐ด1๐œ€โˆ’๐œ€๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ด10โˆ’๐ด11๐œ€๎ƒญ๎‚ธ๐‘ฅ๐œ†๎‚น+๎‚ธ0๎‚น๐ถ๐œ€,(2.12)๐‘ฅ(0)=๐‘ฅ0,๎€ท๐œ†(๐‘‡)=๐‘๐‘ฅ(๐‘‡)โˆ’๐‘ฅ๎€ธ.(2.13) Thus, initial problem (2.2)โ€“(2.5) is reduced to finding the solution of problem (2.12), where ๐œ€ is a small parameter. Therefore, the asymptotic method (see [9]) allowing to expand the solution of system (2.12) with respect to small parameter๐œ€ can be applied.

3. Application of Asymptotic Method

Let us apply the asymptotic method to the Euler-Lagrange equation (2.12) with boundary conditions for ๐‘ฅ(0)and๐œ†(๐‘‡). According to [12], ๎‚ธ๎‚น๎‚ƒ๐‘ฅ(๐‘‡)๐œ†(๐‘‡)=๐‘’๐ด0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ดโ€ฒ0โˆ’๐œ€๐ดโ€ฒ1๎‚„๐‘‡๎‚ธ๐‘ฅ0๎‚น+โŽกโŽขโŽขโŽฃ๐‘’๎‚ƒ๐œ†(0)๐ด0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ดโ€ฒ0โˆ’๐œ€๐ดโ€ฒ1๎‚„๐‘‡โˆ’๎‚ธ๎‚นโŽคโŽฅโŽฅโŽฆ๎ƒฌ๐ด๐ธ00๐ธ0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ต๎…ž0โˆ’๐ด๎…ž0โˆ’๐œ€๐ด๎…ž1๎ƒญโˆ’1๎‚ธ0๎‚น.๐ถ๐œ€(3.1) Further, let us expand the expression๐‘’๎‚ƒ๐ด0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ดโ€ฒ0โˆ’๐œ€๐ดโ€ฒ1๎‚„๐‘‡๎‚ƒ=๐‘’๐ด000โˆ’๐ดโ€ฒ0๎‚„๐‘‡+๐œ€๎‚ƒ๐ด1โˆ’๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ดโ€ฒ1๎‚„๐‘‡(3.2) from (3.1) with respect to ๐œ€. If we denote ๐ป1i.e=๎‚ธ๐ด000โˆ’๐ด๎…ž0๎‚น,๐ป2i.e=๎ƒฌ๐ด1โˆ’๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ด๎…ž1๎ƒญ,(3.3) then according to [12], the expansion of expression (3.2) with respect to ๐œ€ can be represented as: ๐‘’๐ป1๐‘‡+๐œ€๐ป2๐‘‡โ‰ˆ๐‘’๐ป1๐‘‡๎€œ+๐œ€10๐‘’๐ป1๐‘‡(1โˆ’๐‘ )๐ป2๐‘‡๐‘’๐ป1๐‘‡๐‘ ๐‘‘๐‘ (3.4) Denote the integral in (3.4) by ๐ฟ0. Then it is not difficult to show that matrix ๐ฟ0 is a solution of the following Sylvester's equation:๐ป1๐ฟ0โˆ’๐ฟ0๐ป1=๐‘’๐ป1๐‘‡๐ป2โˆ’๐ป2๐‘’๐ป1๐‘‡.(3.5) Therefore, for expression (3.2) we obtain the expansion๐‘’๐ป1๐‘‡+๐œ€๐ป2๐‘‡โ‰ˆ๐‘’๐ป1๐‘‡+๐œ€๐ฟ0.(3.6) Introducing notations ๐ฟ0=๎‚ธ๐ฟ1๐ฟ2๐ฟ3๐ฟ4๎‚น,๎ƒฌ๐ด0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ต๎…ž0โˆ’๐ด๎…ž0โˆ’๐œ€๐ด๎…ž1๎ƒญโˆ’1=๎‚ธ๐‘†1๐‘†20๐‘†4๎‚น,(3.7) expression (3.1) can be simplified to ๎‚ธ๐œ†๎‚น=๎ƒฌ๐‘’๐‘ฅ(๐‘‡)(๐‘‡)๐ด0๐‘‡๐‘’๐‘ฅ(0)โˆ’๐ด0๎…ž๐‘‡๎ƒญ๎‚ธ๐ฟ๐œ†(0)+๐œ€1๐‘ฅ(0)+๐ฟ2๐œ†(0)+๐‘’๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘†1๐ถ๐ฟ3๐‘ฅ(0)+๐ฟ4๎‚น๐œ†(0).(3.8) Hence, adding boundary conditions from (2.12), we arrive to the following system of algebraic equations: ๐‘ฅ(๐‘‡)โˆ’๐œ€๐ฟ2๐œ†(0)=๐‘’๐ด0๐‘‡๎€ท๐‘’๐‘ฅ(0)+๐œ€๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘†1๐ถ+๐ฟ1๎€ธ,๎‚€๐‘’๐‘ฅ(0)๐œ†(๐‘‡)โˆ’โˆ’๐ดโ€ฒ0๐‘‡+๐œ€๐ฟ4๎‚๐œ†(0)=๐œ€๐ฟ3๐‘ฅ(0),๐œ†(๐‘‡)โˆ’๐‘๐‘ฅ(๐‘‡)=โˆ’๐‘๐‘ฅ(3.9) which in the matrix form can be written asโŽกโŽขโŽขโŽฃ๐ธโˆ’๐œ€๐ฟ200โˆ’๐‘’โˆ’๐ดโ€ฒ0๐‘‡โˆ’๐œ€๐ฟ4๐ธโŽคโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃ๐‘ฅ๐œ†โŽคโŽฅโŽฅโŽฆ=โŽกโŽขโŽขโŽฃ๐‘’๐‘0โˆ’๐ธ(๐‘‡)๐œ†(0)(๐‘‡)๐ด0๐‘‡๐‘ฅ0๎€ท๐‘’+๐œ€๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘†1๐ถ+๐ฟ1๐‘ฅ0๎€ธ๐œ€๐ฟ3๐‘ฅ0๐‘๐‘ฅโŽคโŽฅโŽฅโŽฆ.(3.10) Multiplying (3.10) by [๐ธ000๐ธ๐ธ00๐ธ] on the left, we obtainโŽกโŽขโŽขโŽฃ๐ธโˆ’๐œ€๐ฟ20๐‘โˆ’๐‘’โˆ’๐ดโ€ฒ0๐‘‡โˆ’๐œ€๐ฟ40โŽคโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽฃ๐‘ฅ๐œ†โŽคโŽฅโŽฅโŽฆ=โŽกโŽขโŽขโŽฃ๐‘’๐‘0โˆ’๐ธ(๐‘‡)๐œ†(0)(๐‘‡)๐ด0๐‘‡๐‘ฅ0๎€ท๐‘’+๐œ€๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘†1๐ถ+๐ฟ1๐‘ฅ0๎€ธ๐‘๐‘ฅ+๐œ€๐ฟ3๐‘ฅ0๐‘๐‘ฅโŽคโŽฅโŽฅโŽฆ.(3.11) Hence, if we denote the coefficient matrix in (3.11) by ๐‘€, then it can be written asโŽกโŽขโŽขโŽฃ๐‘€=๐ธโˆ’๐œ€๐ฟ20๐‘โˆ’๐‘’โˆ’๐ดโ€ฒ0๐‘‡โˆ’๐œ€๐ฟ40โŽคโŽฅโŽฅโŽฆ=๎‚ธ๐พ๐‘0โˆ’๐ธ๐พ(๐œ€)01๎‚นโˆ’๐ธ,(3.12) where๎‚ธ๐พ(๐œ€)=๐ธโˆ’๐œ€๐ฟ2๐‘โˆ’๐‘’โˆ’๐ดโ€ฒ0๐‘‡โˆ’๐œ€๐ฟ4๎‚น,๐พ1=๎€บ๎€ป๐‘0.(3.13) It is not difficult to show that๎‚ธ๐พ๐พ(๐œ€)01๎‚นโˆ’๐ธโˆ’1=๎ƒฌ๐พโˆ’1๐พ(๐œ€)01๐พโˆ’1๎ƒญ(๐œ€)โˆ’๐ธ.(3.14) Hence, using the fact that๐พโˆ’1(๐œ€)โ‰ˆ๐พโˆ’1(0)โˆ’๐พโˆ’1ฬ‡(0)๐พ(0)๐พโˆ’1(0)๐œ€(3.15) we obtain the inverse matrix ๐‘€โˆ’1โ‰ˆโŽกโŽขโŽขโŽขโŽฃ๐ธ+๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐œ€โˆ’๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘’๐œ€0๐ดโ€ฒ0๐‘‡๐‘โˆ’๐‘’๐ดโ€ฒ0๐‘‡๐ฟ4๐‘’๐ดโ€ฒ0๐‘‡๐‘๐œ€+๐‘’๐ดโ€ฒ0๐‘‡๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐œ€๐‘’๐ดโ€ฒ0๐‘‡โˆ’๐‘’๐ดโ€ฒ0๐‘‡๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐œ€+๐‘’๐ดโ€ฒ0๐‘‡๐ฟ4๐œ€0๐‘+๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐œ€โˆ’๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡โŽคโŽฅโŽฅโŽฅโŽฆ๐œ€โˆ’๐ธ(3.16) and, consequently, multiplying the both sides of (3.11) by ๐‘€โˆ’1 on the left, we obtain the following analytic formulae to determine values of ๐‘ฅ(๐‘‡),๐œ†(0),๐œ†(๐‘‡): โŽกโŽขโŽขโŽฃโŽคโŽฅโŽฅโŽฆ=โŽกโŽขโŽขโŽขโŽฃ๐‘’๐‘ฅ(๐‘‡)๐œ†(0)๐œ†(๐‘‡)๐ด0๐‘‡๐‘ฅ0๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘’๐ด0๐‘‡๐‘ฅ0+๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘ฅ๐‘๐‘’๐ด0๐‘‡๐‘ฅ0โˆ’๐‘๐‘ฅโŽคโŽฅโŽฅโŽฅโŽฆโŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ๐‘’+๐œ€๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘†1๐ถ+๐ฟ1๐‘ฅ0+๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘’๐ด0๐‘‡๐‘ฅ0โˆ’๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘ฅโŽงโŽชโŽจโŽชโŽฉ๐‘’โˆ’๐ดโ€ฒ0๐‘‡๐‘๐‘’๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘†1๐ถ+๐‘’๐ดโ€ฒ0๐‘‡๐‘๐ฟ1๐‘ฅ0+๐‘’๐ดโ€ฒ0๐‘‡๐ฟ3๐‘ฅ0โˆ’๐‘’๐ดโ€ฒ0๐‘‡๐ฟ4๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘’๐ด0๐‘‡๐‘ฅ0+๐‘’๐ดโ€ฒ0๐‘‡๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘’๐ด0๐‘‡๐‘ฅ0โˆ’๐‘’๐ดโ€ฒ0๐‘‡๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘ฅ+๐‘’๐ด0๎…ž๐‘‡๐ฟ4๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘ฅโŽซโŽชโŽฌโŽชโŽญ๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘’๐ด0๐‘‡๐‘ฅ0โˆ’๐‘๐ฟ2๐‘’๐ดโ€ฒ0๐‘‡๐‘๐‘ฅ+๐‘๐ฟ1๐‘ฅ0+๐‘๐‘’๐ด0๐‘‡๐‘†1๐ถโˆ’๐‘๐‘†1๐ถโŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ.(3.17) Further, as in (3.1), using determined in (3.17) value ๐œ†(0), it is possible to find ๐‘ฅ(๐‘ก๐‘–),๐œ†(๐‘ก๐‘–) in the form๎ƒฌ๐‘ฅ๎€ท๐‘ก๐‘–๎€ธ๐œ†๎€ท๐‘ก๐‘–๎€ธ๎ƒญ๎‚ƒ=๐‘’๐ด0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ดโ€ฒ0โˆ’๐œ€๐ดโ€ฒ1๎‚„๐‘ก๐‘–๎‚ธ๐‘ฅ0๎‚น+โŽกโŽขโŽขโŽฃ๐‘’๎‚ƒ๐œ†(0)๐ด0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ตโ€ฒ0โˆ’๐ดโ€ฒ0โˆ’๐œ€๐ดโ€ฒ1๎‚„โˆ’๎‚ธ๎‚นโŽคโŽฅโŽฅโŽฆ๎ƒฌ๐ด๐ธ00๐ธ0+๐œ€๐ด1โˆ’๐œ€๐ต๐‘…โˆ’1๐ต๎…ž0โˆ’๐ด0โˆ’๐œ€๐ด1๎ƒญโˆ’1๎‚ธ0๎‚น๐ถ๐œ€(3.18) for every ๐‘ก๐‘–โˆˆ[0๐‘‡].

Therefore, expansions for ๐‘ฅ(๐‘ก๐‘–)and ๐‘ข(๐‘ก๐‘–) with respect to ๐œ€ can be obtained in the form๐‘ฅ๎€ท๐‘ก๐‘–๎€ธ=๐‘’๐ด0๐‘ก๐‘–๎€ท๐‘’+๐œ€๐ด0๐‘ก๐‘–๐‘†1๐ถโˆ’๐‘†1๐ถ+๐ฟ11๐‘ฅ0โˆ’๐ฟ22๐‘’๐ด0๎…ž๐‘ก๐‘–๐‘๐‘’๐ด0๐‘ก๐‘–๐‘ฅ0+๐ฟ22๐‘’๐ด0๎…ž๐‘ก๐‘–๐‘๐‘ฅ๎€ธ,๐œ†๎€ท๐‘ก๐‘–๎€ธ=โˆ’๐‘๐‘’๐ด0๐‘‡๐‘ฅ0+๐‘๐‘ฅ๎€ท+๐œ€๐‘๐ฟ22๐‘’๐ด0๎…ž๐‘ก๐‘–๐‘๐‘’๐ด0๐‘ก๐‘–๐‘ฅ0โˆ’๐‘๐ฟ22๐‘’๐ด0๎…ž๐‘ก๐‘–๐‘๐‘ฅโˆ’๐‘๐ฟ11๐‘ฅ0โˆ’๐‘๐‘’๐ด0๐‘ก๐‘–๐‘†1๐ถโˆ’๐‘๐‘†1๐ถ๎€ธ,๐‘ข๎€ท๐‘ก๐‘–๎€ธ=โˆ’๐‘…โˆ’1๎€ท๐‘ก๐ตโ€ฒ๐œ†๐‘–๎€ธ.(3.19) Here ๐ฟ11,๐ฟ22 are block matrices of matrix-solutions ๐ฟ๐‘– of Sylvester's equation [12, 13]๐ป1๐ฟ๐‘–โˆ’๐ฟ๐‘–๐ป1=๐‘’๐ป1๐‘ก๐‘–๐ป2โˆ’๐ป2๐‘’๐ป1๐‘ก๐‘–(3.20) for every ๐‘ก๐‘–.

4. Computational Experiments

On the basis of the obtained formulae, we have developed an algorithm and computer program using MATLAB system. In [5] an algorithm for solving problem (2.8)โ€“(2.10) for the case when ๐ถ=0,๐‘=2 is developed. It is clear that for ๐‘>2 the algorithm will yield more accurate solutions. However, for computational comparison of the asymptotic method with the method described in [5], authors have considered only the case when๐ถ=0,๐‘=2. It is possible to prove that in this case Sylvester's equation has infinitely many solutions. While using a special program in MATLAB one particular solution is determined.

In Figures 1, 2, 3, and 4 the graphs of the functions ๐‘ƒ1,๐‘„1,๐‘ƒ2 and๐‘„2 for both algorithms are given. Namely, the graphs for the functions obtained using the algorithm introduced in [5, 14, 15] are shown in solid lines and by the algorithm elaborated using the asymptotic method are given in dashed lines. A comparative analysis shows that the results for the functions๐‘ƒ1,๐‘„1,๐‘ƒ2, and ๐‘„2 for both algorithms coincide with a sufficiently high accuracy.