Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2010, Article ID 391846, 13 pages
http://dx.doi.org/10.1155/2010/391846
Research Article

Adaptive Fuzzy Tracking Control for a Permanent Magnet Synchronous Motor via Backstepping Approach

1Institute of Complexity Science, Qingdao University, Qingdao 266071, China
2Shan Dong Province Key Laboratory of Industrial Control Technique, Qingdao University, Qingdao 266071, China
3State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

Received 16 July 2009; Accepted 30 September 2009

Academic Editor: José Balthazar

Copyright © 2010 Jinpeng Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F.-J. Lin and S.-L. Chiu, “Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives,” IEE Proceedings: Control Theory and Applications, vol. 145, no. 1, pp. 63–72, 1998. View at Google Scholar · View at Scopus
  2. S. C. Tong and H. H. Li, “Fuzzy adaptive sliding model control for mimo nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 354–360, 2003. View at Google Scholar
  3. A. Isidori, Nonlinear Control Systems, Communications and Control Engineering Series, Springer, Berlin, Germany, 3rd edition, 1995. View at MathSciNet
  4. H. Lee and M. Tomizuka, “Robust adaptive control using a universal approximator for SISO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 1, pp. 95–106, 2000. View at Google Scholar · View at Scopus
  5. M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, New York, NY, USA, 1995.
  6. X. Liu, G. Gu, and K. Zhou, “Robust stabilization of MIMO nonlinear systems by backstepping,” Automatica, vol. 35, no. 5, pp. 987–992, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-H. Hu and J.-B. Zou, “Adaptive backstepping control of permanent magnet synchronous motors with parameter uncertainties,” Control and Decision, vol. 21, no. 11, pp. 1264–1269, 2006. View at Google Scholar · View at Scopus
  8. L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965. View at Google Scholar · View at MathSciNet
  9. C. Elmas, O. Ustun, and H. H. Sayan, “A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive,” Expert Systems with Applications, vol. 34, no. 1, pp. 657–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Tong and H.-X. Li, “Direct adaptive fuzzy output tracking control of nonlinear systems,” Fuzzy Sets and Systems, vol. 128, no. 1, pp. 107–115, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  11. C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller—I,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 404–418, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  12. C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller—II,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 419–435, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  13. P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp. 537–541, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Leonhard, Control of Electrical Drives, Springer, Berlin Germany, 1985.
  15. L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 807–814, 1992. View at Publisher · View at Google Scholar · View at Scopus