Abstract

Lightlike geometry has its applications in general relativity, particularly in black hole theory. Indeed, it is known that lightlike hypersurfaces are examples of physical models of Killing horizons in general relativity (Galloway, 2007). In this paper, we introduce the definition of generic lightlike submanifolds of an indefinite cosymplectic manifold. We investigate new results on a class of generic lightlike submanifolds 𝑀 of an indefinite cosymplectic manifold 𝑀.

1. Introduction

In the generalization from Riemannian to semi-Riemannian manifolds, the induced metric may be degenerate (lightlike) therefore there is a natural existence of lightlike submanifolds and for which the local and global geometry is completely different than nondengerate case. In lightlike case, the standard textbook definitions do not make sense- and one fails to use the theory of non-degenerate geometry in the usual way. The primary difference between the lightlike submanifolds and non-degenerate submanifolds is that in the first case, the normal vector bundle intersects with the tangent bundle. Thus, the study of lightlike submanifolds becomes more difficult and different from the study of non-degenerate submanifolds. Moreover, the geometry of lightlike submanifolds is used in mathematical physics, in particular, in general relativity since lightlike submanifolds produce models of different types of horizons (event horizons, Cauchy’s horizons, and Kruskal’s horizons). The universe can be represented as a four-dimensional submanifold embedded in a (4+𝑛)-dimensional spacetime manifold. Lightlike hypersurfaces are also studied in the thoery of electromagnetism [1]. Thus, large number of applications but limited information available, motivated us to do research on this subject matter. Kupeli [2] and Bejancu and Duggal [1] developed the general theory of degenerate (lightlike) submanifolds. They constructed a transversal vector bundle of lightlike submanifold and investigated various properties of these manifolds. The geometry of both lightlike hypersurfaces and half lightlike submanifolds of indefinite cosymplectic manifolds was studied by Jin ([3, 4]). However, a general notion of generic lightlike submanifolds of an indefinite cosymplectic manifold has not been introduced as yet.

The objective of this paper is to study generic π‘Ÿ-lightlike submanifolds 𝑀 of an indefinite cosymplectic manifold 𝑀 subject to the conditions: (1) 𝑀 is totally umbilical, or (2) 𝑆(𝑇𝑀) is totally umbilical in 𝑀. In Section 1, we first of all recall some of fundamental formulas in the theory of π‘Ÿ-lightlike submanifolds. In Section 2, we newly define generic lightlike submanifolds. After that, we prove some basic theorems which will be used in the rest of this paper. In Section 3, we study generic π‘Ÿ-lightlike submanifolds of 𝑀.

2. Lightlike Submanifolds

Let (𝑀,𝑔) be an π‘š-dimensional lightlike submanifold of an (π‘š+𝑛)-dimensional semi-Riemannian manifold (𝑀,𝑔). Then the radical distribution Rad(𝑇𝑀)=π‘‡π‘€βˆ©π‘‡π‘€βŸ‚ is a vector subbundle of the tangent bundle 𝑇𝑀 and the normal bundle π‘‡π‘€βŸ‚, of rank π‘Ÿ(1β‰€π‘Ÿβ‰€min{π‘š,𝑛}). In general, there exist two complementary non-degenerate distributions 𝑆(𝑇𝑀) and 𝑆(π‘‡π‘€βŸ‚) of Rad(𝑇𝑀) in 𝑇𝑀 and π‘‡π‘€βŸ‚, respectively, called the screen and coscreen distributions on 𝑀, such that𝑇𝑀=Rad(𝑇𝑀)βŠ•orth𝑆(𝑇𝑀),π‘‡π‘€βŸ‚=Rad(𝑇𝑀)βŠ•orthπ‘†ξ€·π‘‡π‘€βŸ‚ξ€Έ,(2.1) where the symbol βŠ•orth denotes the orthogonal direct sum. We denote such a lightlike submanifold by (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(π‘‡π‘€βŸ‚)). Denote by 𝐹(𝑀) the algebra of smooth functions on 𝑀 and by Ξ“(𝐸) the 𝐹(𝑀) module of smooth sections of a vector bundle 𝐸 over 𝑀. We use the same notation for any other vector bundle. We use the following range of indices:𝑖,𝑗,π‘˜,β€¦βˆˆ{1,…,π‘Ÿ},𝛼,𝛽,𝛾,β€¦βˆˆ{π‘Ÿ+1,…,𝑛}.(2.2)

Let tr(𝑇𝑀) and ltr(𝑇𝑀) be complementary (but not orthogonal) vector bundles to 𝑇𝑀 in π‘‡π‘€βˆ£π‘€ and π‘‡π‘€βŸ‚ in 𝑆(𝑇𝑀)βŸ‚, respectively, and let {𝑁1,…,π‘π‘Ÿ} be a lightlike basis of Ξ“(ltr(𝑇𝑀)βˆ£π’°) consisting of smooth sections of 𝑆(𝑇𝑀)βŸ‚βˆ£π’°, where 𝒰 is a coordinate neighborhood of 𝑀, such that𝑔𝑁𝑖,πœ‰π‘—ξ€Έ=𝛿𝑖𝑗,𝑔𝑁𝑖,𝑁𝑗=0,(2.3) where {πœ‰1,…,πœ‰π‘Ÿ} is a lightlike basis of Ξ“(Rad(𝑇𝑀)). Then we have𝑇𝑀=π‘‡π‘€βŠ•tr(𝑇𝑀)={Rad(𝑇𝑀)βŠ•tr(𝑇𝑀)}βŠ•orth𝑆(𝑇𝑀)={Rad(𝑇𝑀)βŠ•ltr(𝑇𝑀)}βŠ•orth𝑆(𝑇𝑀)βŠ•orthπ‘†ξ€·π‘‡π‘€βŸ‚ξ€Έ.(2.4)

We say that a lightlike submanifold (𝑀,𝑔,𝑆(𝑇𝑀),𝑆(π‘‡π‘€βŸ‚)) of 𝑀 is(1)π‘Ÿ-lightlike if 1β‰€π‘Ÿ<π‘šπ‘–π‘›{π‘š,𝑛};(2)coisotropic if 1β‰€π‘Ÿ=𝑛<π‘š;(3)isotropic if 1β‰€π‘Ÿ=π‘š<𝑛;(4)totally lightlike if 1β‰€π‘Ÿ=π‘š=𝑛.

The above three classes (2)–(4) are particular cases of the class (1) as follows: 𝑆(π‘‡π‘€βŸ‚)={0}, 𝑆(𝑇𝑀)={0}, and 𝑆(𝑇𝑀)=𝑆(π‘‡π‘€βŸ‚)={0}, respectively. The geometry of π‘Ÿ-lightlike submanifolds is more general form than that of the other three type submanifolds. For this reason, in this paper we consider only π‘Ÿ-lightlike submanifolds 𝑀≑(𝑀,𝑔,𝑆(𝑇𝑀),𝑆(π‘‡π‘€βŸ‚)), with the following local quasiorthonormal field of frames of 𝑀: ξ€½πœ‰1,…,πœ‰π‘Ÿ,𝑁1,…,π‘π‘Ÿ,πΉπ‘Ÿ+1,…,πΉπ‘š,πΈπ‘Ÿ+1,…,𝐸𝑛,(2.5) where the sets {πΉπ‘Ÿ+1,…,πΉπ‘š} and {πΈπ‘Ÿ+1,…,𝐸𝑛} are orthonormal basis of Ξ“(𝑆(𝑇𝑀)) and Ξ“(𝑆(π‘‡π‘€βŸ‚)), respectively.

Let βˆ‡ be the Levi-Civita connection of 𝑀 and 𝑃 the projection morphism of Ξ“(𝑇𝑀) on Ξ“(𝑆(𝑇𝑀)) with respect to (2.1). For an π‘Ÿ-lightlike submanifold, the local Gauss-Weingarten formulas are given byβˆ‡π‘‹π‘Œ=βˆ‡π‘‹π‘Œ+π‘Ÿξ“π‘–=1β„Žβ„“π‘–(𝑋,π‘Œ)𝑁𝑖+𝑛𝛼=π‘Ÿ+1β„Žπ‘ π›Ό(𝑋,π‘Œ)𝐸𝛼,(2.6)βˆ‡π‘‹π‘π‘–=βˆ’π΄π‘π‘–π‘‹+π‘Ÿξ“π‘—=1πœπ‘–π‘—(𝑋)𝑁𝑗+𝑛𝛼=π‘Ÿ+1πœŒπ‘–π›Ό(𝑋)𝐸𝛼,(2.7)βˆ‡π‘‹πΈπ›Ό=βˆ’π΄πΈπ›Όπ‘‹+π‘Ÿξ“π‘–=1πœ™π›Όπ‘–(𝑋)𝑁𝑖+𝑛𝛽=π‘Ÿ+1πœŽπ›Όπ›½(𝑋)𝐸𝛽,βˆ‡(2.8)π‘‹π‘ƒπ‘Œ=βˆ‡βˆ—π‘‹π‘ƒπ‘Œ+π‘Ÿξ“π‘–=1β„Žβˆ—π‘–(𝑋,π‘ƒπ‘Œ)πœ‰π‘–,βˆ‡(2.9)π‘‹πœ‰π‘–=βˆ’π΄βˆ—πœ‰π‘–π‘‹βˆ’π‘Ÿξ“π‘—=1πœπ‘—π‘–(𝑋)πœ‰π‘—,(2.10) for any 𝑋,π‘ŒβˆˆΞ“(𝑇𝑀), where βˆ‡ and βˆ‡βˆ— are induced linear connections on 𝑇𝑀 and 𝑆(𝑇𝑀), respectively, the bilinear forms β„Žβ„“π‘– and β„Žπ‘ π›Ό on 𝑀 are called the local lightlike and screen second fundamental forms on 𝑇𝑀, respectively, β„Žβˆ—π‘– are called the local radical second fundamental forms on 𝑆(𝑇𝑀). 𝐴𝑁𝑖, π΄βˆ—πœ‰π‘–, and 𝐴𝐸𝛼 are linear operators on Ξ“(𝑇𝑀) and πœπ‘–π‘—, πœŒπ‘–π›Ό, πœ™π›Όπ‘– and πœŽπ›Όπ›½ are 1-forms on 𝑇𝑀. Since βˆ‡ is torsion-free, βˆ‡ is also torsion-free and both β„Žβ„“π‘– and β„Žπ‘ π›Ό are symmetric. From the fact β„Žβ„“π‘–(𝑋,π‘Œ)=𝑔(βˆ‡π‘‹π‘Œ,πœ‰π‘–), we know that β„Žβ„“π‘– are independent of the choice of a screen distribution. We say that β„Ž(𝑋,π‘Œ)=π‘Ÿξ“π‘–=1β„Žβ„“π‘–(𝑋,π‘Œ)𝑁𝑖+𝑛𝛼=π‘Ÿ+1β„Žπ‘ π›Ό(𝑋,π‘Œ)𝐸𝛼(2.11) is the second fundamental tensor of 𝑀.

The induced connection βˆ‡ on 𝑇𝑀 is not metric and satisfiesξ€·βˆ‡π‘‹π‘”ξ€Έ(π‘Œ,𝑍)=π‘Ÿξ“π‘–=1ξ€½β„Žβ„“π‘–(𝑋,π‘Œ)πœ‚π‘–(𝑍)+β„Žβ„“π‘–(𝑋,𝑍)πœ‚π‘–ξ€Ύ(π‘Œ),(2.12) for all 𝑋,π‘ŒβˆˆΞ“(𝑇𝑀), where πœ‚π‘–π‘  are the 1-forms such thatπœ‚π‘–(𝑋)=𝑔𝑋,𝑁𝑖,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(2.13) But the connection βˆ‡βˆ— on 𝑆(𝑇𝑀) is metric. The above three local second fundamental forms are related to their shape operators byβ„Žβ„“π‘–ξ‚€π΄(𝑋,π‘Œ)=π‘”βˆ—πœ‰π‘–ξ‚βˆ’π‘‹,π‘Œπ‘Ÿξ“π‘˜=1β„Žβ„“π‘˜ξ€·π‘‹,πœ‰π‘–ξ€Έπœ‚π‘˜β„Ž(π‘Œ),(2.14)ℓ𝑖𝐴(𝑋,π‘ƒπ‘Œ)=π‘”βˆ—πœ‰π‘–ξ‚,𝑋,π‘ƒπ‘Œπ‘”ξ‚€π΄βˆ—πœ‰π‘–π‘‹,π‘π‘—ξ‚πœ–=0,(2.15)π›Όβ„Žπ‘ π›Όξ€·π΄(𝑋,π‘Œ)=π‘”πΈπ›Όξ€Έβˆ’π‘‹,π‘Œπ‘Ÿξ“π‘–=1πœ™π›Όπ‘–(𝑋)πœ‚π‘–πœ–(π‘Œ),(2.16)π›Όβ„Žπ‘ π›Ό(𝐴𝑋,π‘ƒπ‘Œ)=𝑔𝐸𝛼,𝑋,π‘ƒπ‘Œπ‘”ξ€·π΄πΈπ›Όπ‘‹,𝑁𝑖=πœ–π›ΌπœŒπ‘–π›Ό(β„Žπ‘‹),(2.17)βˆ—π‘–ξ€·π΄(𝑋,π‘ƒπ‘Œ)=𝑔𝑁𝑖𝑋,π‘ƒπ‘Œ,πœ‚π‘—ξ€·π΄π‘π‘–π‘‹ξ€Έ+πœ‚π‘–ξ‚€π΄π‘π‘—π‘‹ξ‚πœ–=0,(2.18)π›½πœŽπ›Όπ›½=βˆ’πœ–π›ΌπœŽπ›½π›Ό,βˆ€π‘‹,π‘ŒβˆˆΞ“(𝑇𝑀),(2.19) where πœ–π›Ό=𝑔(𝐸𝛼,𝐸𝛼)(=Β±1) is the sign of the vector field 𝐸𝛼. From (2.18), we know that each 𝐴𝑁𝑖 is shape operator related to the local second fundamental form β„Žβˆ—π‘– on 𝑆(𝑇𝑀). Replace π‘Œ by πœ‰π‘— in (2.14), we haveβ„Žβ„“π‘–ξ€·π‘‹,πœ‰π‘—ξ€Έ+β„Žβ„“π‘—ξ€·π‘‹,πœ‰π‘–ξ€Έ=0,(2.20) for all π‘‹βˆˆΞ“(𝑇𝑀). It followsβ„Žβ„“π‘–ξ€·π‘‹,πœ‰π‘–ξ€Έ=0,β„Žβ„“π‘–ξ€·πœ‰π‘—,πœ‰π‘˜ξ€Έ=0.(2.21) Also, replace 𝑋 by πœ‰π‘— in (2.14) and use (2.21), we haveβ„Žβ„“π‘–ξ€·π‘‹,πœ‰π‘—ξ€Έξ‚€=𝑔𝑋,π΄βˆ—πœ‰π‘–πœ‰π‘—ξ‚,π΄βˆ—πœ‰π‘–πœ‰π‘—+π΄βˆ—πœ‰π‘—πœ‰π‘–=0,π΄βˆ—πœ‰π‘–πœ‰π‘–=0.(2.22) For an π‘Ÿ-lightlike submanifold, replace π‘Œ by πœ‰π‘– in (2.16), we haveβ„Žπ‘ π›Όξ€·π‘‹,πœ‰π‘–ξ€Έ=βˆ’πœ–π›Όπœ™π›Όπ‘–(𝑋),βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(2.23) From (2.6), (2.10), and (2.23), for all π‘‹βˆˆΞ“(𝑇𝑀), we haveβˆ‡π‘‹πœ‰π‘–=βˆ’π΄βˆ—πœ‰π‘–π‘‹βˆ’π‘Ÿξ“π‘—=1πœπ‘—π‘–(𝑋)πœ‰π‘—βˆ’π‘›ξ“π›Ό=π‘Ÿ+1πœ–π›Όπœ™π›Όπ‘–(𝑋)𝐸𝛼+π‘Ÿξ“π‘—=1β„Žβ„“π‘—ξ€·π‘‹,πœ‰π‘–ξ€Έπ‘π‘—.(2.24)

Definition 2.1. A lightlike submanifold 𝑀 of a semi-Riemannian manifold (𝑀,𝑔) is said to be irrotational if βˆ‡π‘‹πœ‰π‘–βˆˆΞ“(𝑇𝑀) for any π‘‹βˆˆΞ“(𝑇𝑀) and πœ‰π‘–βˆˆΞ“(Rad(𝑇𝑀)) for all 𝑖.

Note 1. For an π‘Ÿ-lightlike 𝑀, the above definition is equivalent to β„Žβ„“π‘—ξ€·π‘‹,πœ‰π‘–ξ€Έ=0,β„Žπ‘ π›Όξ€·π‘‹,πœ‰π‘–ξ€Έ=πœ™π›Όπ‘–(𝑋)=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(2.25)

Denote by 𝑅 and 𝑅 the curvature tensors of βˆ‡ and βˆ‡, respectively. Using the local Gauss-Weingarten formulas for 𝑀, we obtain+𝑅(𝑋,π‘Œ)𝑍=𝑅(𝑋,π‘Œ)π‘π‘Ÿξ“π‘–=1ξ€½β„Žβ„“π‘–(𝑋,𝑍)π΄π‘π‘–π‘Œβˆ’β„Žβ„“π‘–(π‘Œ,𝑍)𝐴𝑁𝑖𝑋+𝑛𝛼=π‘Ÿ1ξ€½β„Žπ‘ π›Ό(𝑋,𝑍)π΄πΈπ›Όπ‘Œβˆ’β„Žπ‘ π›Ό(π‘Œ,𝑍)𝐴𝐸𝛼𝑋+π‘Ÿξ“π‘–=1ξƒ―ξ€·βˆ‡π‘‹β„Žβ„“π‘–ξ€Έ(ξ€·βˆ‡π‘Œ,𝑍)βˆ’π‘Œβ„Žβ„“π‘–ξ€Έ(+𝑋,𝑍)π‘Ÿξ“π‘—=1ξ€Ίπœπ‘—π‘–(𝑋)β„Žβ„“π‘—(π‘Œ,𝑍)βˆ’πœπ‘—π‘–(π‘Œ)β„Žβ„“π‘—ξ€»+(𝑋,𝑍)𝑛𝛼=π‘Ÿ+1ξ€Ίπœ™π›Όπ‘–(𝑋)β„Žπ‘ π›Ό(π‘Œ,𝑍)βˆ’πœ™π›Όπ‘–(π‘Œ)β„Žπ‘ π›Όξ€»ξƒ°π‘(X,𝑍)𝑖+𝑛𝛼=π‘Ÿ+1ξƒ―ξ€·βˆ‡π‘‹β„Žπ‘ π›Όξ€Έξ€·βˆ‡(π‘Œ,𝑍)βˆ’π‘Œβ„Žπ‘ π›Όξ€Έ+(𝑋,𝑍)π‘Ÿξ“π‘–=1ξ€ΊπœŒπ‘–π›Ό(𝑋)β„Žβ„“π‘–(π‘Œ,𝑍)βˆ’πœŒπ‘–π›Ό(π‘Œ)β„Žπ‘ π›Όξ€»+(𝑋,𝑍)𝑛𝛽=π‘Ÿ+1ξ‚ƒπœŽπ›½π›Ό(𝑋)β„Žπ‘ π›½(π‘Œ,𝑍)βˆ’πœŽπ›½π›Ό(π‘Œ)β„Žπ‘ π›½ξ‚„ξƒ°πΈ(𝑋,𝑍)𝛼,(2.26) for all 𝑋,π‘Œ,π‘βˆˆΞ“(𝑇𝑀). Assume that 𝑀 is irrotational. Replace 𝑍 by πœ‰π‘˜ in (2.26) and use (2.10), (2.15), (2.17), and (2.25), then we have𝑅(𝑋,π‘Œ)πœ‰π‘˜=𝑅(𝑋,π‘Œ)πœ‰π‘˜+π‘Ÿξ“π‘–=1ξ‚†π‘”ξ‚€π΄βˆ—πœ‰π‘–π‘Œ,π΄βˆ—πœ‰π‘˜π‘‹ξ‚ξ‚€π΄βˆ’π‘”βˆ—πœ‰π‘–π‘‹,π΄βˆ—πœ‰π‘˜π‘Œπ‘ξ‚ξ‚‡π‘–+𝑛𝛼=π‘Ÿ+1πœ–π›Όξ‚†π‘”ξ‚€π΄πΈπ›Όπ‘Œ,π΄βˆ—πœ‰π‘˜π‘‹ξ‚ξ‚€π΄βˆ’π‘”πΈπ›Όπ‘‹,π΄βˆ—πœ‰π‘˜π‘ŒπΈξ‚ξ‚‡π›Ό.(2.27) Using (2.27) and the fact 𝑅(𝑋,π‘Œ)π‘βˆˆΞ“(𝑇𝑀) for 𝑋,π‘Œ,π‘βˆˆΞ“(𝑇𝑀), we get𝑔𝑅(𝑋,π‘Œ)𝑍,πœ‰π‘˜ξ‚=βˆ’π‘”ξ‚€π‘…(𝑋,π‘Œ)πœ‰π‘˜ξ‚ξ€·,𝑍=βˆ’π‘”π‘…(𝑋,π‘Œ)πœ‰π‘˜ξ€Έ+,π‘π‘Ÿξ“π‘–=1ξ‚†π‘”ξ‚€π΄βˆ—πœ‰π‘–π‘‹,π΄βˆ—πœ‰π‘˜π‘Œξ‚ξ‚€π΄βˆ’π‘”βˆ—πœ‰π‘–π‘Œ,π΄βˆ—πœ‰π‘˜π‘‹πœ‚ξ‚ξ‚‡π‘–(𝑍)=𝑔𝑅(𝑋,π‘Œ)𝑍,πœ‰π‘˜ξ€Έ+π‘Ÿξ“π‘–=1ξ‚†π‘”ξ‚€π΄βˆ—πœ‰π‘–π‘‹,π΄βˆ—πœ‰π‘˜π‘Œξ‚ξ‚€π΄βˆ’π‘”βˆ—πœ‰π‘–π‘Œ,π΄βˆ—πœ‰π‘˜π‘‹πœ‚ξ‚ξ‚‡π‘–=(𝑍)π‘Ÿξ“π‘–=1ξ‚†π‘”ξ‚€π΄βˆ—πœ‰π‘–π‘‹,π΄βˆ—πœ‰π‘˜π‘Œξ‚ξ‚€π΄βˆ’π‘”βˆ—πœ‰π‘–π‘Œ,π΄βˆ—πœ‰π‘˜π‘‹πœ‚ξ‚ξ‚‡π‘–(𝑍),βˆ€π‘‹,π‘Œ,π‘βˆˆΞ“(𝑇𝑀).(2.28)

3. Indefinite Cosymplectic Manifolds

An odd dimensional smooth manifold (𝑀,𝑔) is called a contact metric manifold [5, 6] if there exists a (1,1)-type tensor field 𝐽, a vector field 𝜁, called the characteristic vector field, and its 1-form πœƒ satisfying𝐽2𝑋=βˆ’π‘‹+πœƒ(𝑋)𝜁,𝐽𝜁=0,πœƒβˆ˜π½=0,πœƒ(𝜁)=1,𝑔(𝜁,𝜁)=πœ–,𝑔(𝐽𝑋,π½π‘Œ)=𝑔(𝑋,π‘Œ)βˆ’πœ–πœƒ(𝑋)πœƒ(π‘Œ),πœƒ(𝑋)=πœ–π‘”(𝜁,𝑋),π‘‘πœƒ(𝑋,π‘Œ)=𝑔(𝐽𝑋,π‘Œ),πœ–=Β±1,(3.1) for any vector fields 𝑋,π‘Œ on 𝑀. Then the set (𝐽,πœƒ,𝜁,𝑔) is called a contact metric structure on 𝑀. Note that we may assume that πœ–=1 without loss of generality [7]. We say that 𝑀 has a normal contact structure [5, 8] if 𝑁𝐽+π‘‘πœƒβŠ—πœ=0, where 𝑁𝐽 is the Nijenhuis tensor field of 𝐽. A normal contact metric manifold is called a cosymplectic [9, 10] for which we haveβˆ‡π‘‹πœƒ=0,βˆ‡π‘‹π½=0,(3.2) for any vector field 𝑋 on 𝑀. A cosymplectic manifold 𝑀=(𝑀,𝐽,𝜁,πœƒ,𝑔) is called an indefinite cosymplectic manifold [3, 4] if (𝑀,𝑔) is a semi-Riemannian manifold of index πœ‡(>0). For any indefinite cosymplectic manifold, apply βˆ‡π‘‹ to 𝐽𝜁=0 for any vector field 𝑋 on 𝑀 and use (3.2), then we have 𝐽(βˆ‡π‘‹πœ)=0. Apply 𝐽 to this and use (3.1) and πœƒ(βˆ‡π‘‹πœ)=0, we getβˆ‡π‘‹πœ=0.(3.3)

An indefinite cosymplectic manifold 𝑀 is called an indefinite cosymplectic space form, denoted by 𝑀(𝑐), if it has the constant 𝐽-sectional curvature 𝑐 [3, 9, 10]. The curvature tensor 𝑅 of this space form 𝑀(𝑐) is given by𝑅𝑐(𝑋,π‘Œ)𝑍=4𝑔(π‘Œ,𝑍)π‘‹βˆ’π‘”(𝑋,𝑍)π‘Œ+πœƒ(𝑋)πœƒ(𝑍)π‘Œβˆ’πœƒ(π‘Œ)πœƒ(𝑍)𝑋+𝑔(𝑋,𝑍)πœƒ(π‘Œ)πœβˆ’+𝑔(π‘Œ,𝑍)πœƒ(𝑋)πœπ‘”(π½π‘Œ,𝑍)𝐽𝑋+𝑔(𝐽𝑍,𝑋)π½π‘Œβˆ’2ξ€Ύ,𝑔(𝐽𝑋,π‘Œ)𝐽𝑍(3.4) for any vector fields 𝑋,π‘Œ, and 𝑍 in 𝑀.

Let 𝑀 be an π‘š-dimensional π‘Ÿ-lightlike submanifold of an (π‘š+𝑛)-dimensional indefinite cosymplectic manifold 𝑀 and 𝑃 the projection morphism of Ξ“(𝑇𝑀) on Ξ“(𝑆(𝑇𝑀)) with respect to (2.4). The characteristic vector field 𝜁 of 𝑀 from (2.4) is decomposed by𝜁=π‘ƒπœ+π‘Ÿξ“π‘–=1π‘Žπ‘–πœ‰π‘–+π‘Ÿξ“π‘–=1𝑏𝑖𝑁𝑖+𝑛𝛼=π‘Ÿ+1𝑒𝛼𝐸𝛼,(3.5) where π‘Žπ‘–=πœƒ(𝑁𝑖), 𝑏𝑖=πœƒ(πœ‰π‘–) and 𝑒𝛼=πœ–π›Όπœƒ(𝐸𝛼) are smooth functions on 𝑀.

Note 2. Although 𝑆(𝑇𝑀) is not unique, it is canonically isomorphic to the factor vector bundle 𝑆(𝑇𝑀)βˆ—=𝑇𝑀/Rad(𝑇𝑀) considered by Kupeli [2]. Thus all screen distributions 𝑆(𝑇𝑀) are mutually isomorphic. For this reason, the following definition is well defined.

Definition 3.1 (see [6]). One says that 𝑀 is generic lightlike submanifold of 𝑀 if there exists a screen distribution 𝑆(𝑇𝑀) of 𝑀 such that 𝐽𝑆(𝑇𝑀)βŸ‚ξ€ΈβŠ‚π‘†(𝑇𝑀).(3.6)

Proposition 3.2 (see [3]). Let 𝑀 be a lightlike hypersurface of an indefinite cosymplectic manifold 𝑀. Then 𝑀 is a generic lightlike submanifold of 𝑀.

Proposition 3.3 (see [4]). Let 𝑀 be a 1-lightlike submanifold of codimension 2 of an indefinite cosymplectic manifold 𝑀 such that the coscreen distribution 𝑆(π‘‡π‘€βŸ‚) is spacelike. Then 𝑀 is a generic lightlike submanifold of 𝑀.

Theorem 3.4. Let 𝑀 be an irrotational generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic space form 𝑀(𝑐). Then one has 𝑐=0.

Proof. Assume that π‘π‘˜β‰ 0 in (3.5). Note that (3.1) implies 𝑔(𝐽𝑋,πœ‰π‘˜)=βˆ’π‘”(𝑋,π½πœ‰π‘˜) for all π‘‹βˆˆΞ“(𝑇𝑀). Then, taking the scalar product with πœ‰π‘˜ to (3.4), and using (2.28), we get 4π‘Ÿξ“π‘–=1ξ‚†π‘”ξ‚€π΄βˆ—πœ‰π‘–π‘‹,π΄βˆ—πœ‰π‘˜π‘Œξ‚ξ‚€π΄βˆ’π‘”βˆ—πœ‰π‘–π‘Œ,π΄βˆ—πœ‰π‘˜π‘‹πœ‚ξ‚ξ‚‡π‘–ξ€½π‘(𝑍)=π‘π‘˜π‘”(𝑋,𝑍)πœƒ(π‘Œ)βˆ’π‘π‘˜π‘”(π‘Œ,𝑍)πœƒ(𝑋)βˆ’ξ€·π‘”(π½π‘Œ,𝑍)𝑔𝑋,π½πœ‰π‘˜ξ€Έβˆ’π‘”ξ€·(𝐽𝑍,𝑋)π‘”π‘Œ,π½πœ‰π‘˜ξ€Έ+2𝑔(𝐽𝑋,π‘Œ)𝑔𝑍,π½πœ‰π‘˜ξ€Έξ€Ύ,βˆ€π‘‹,π‘Œ,π‘βˆˆΞ“(𝑇𝑀).(3.7) Replace 𝑍 by π½πœ‰π‘˜ and π‘Œ by πœ‰π‘˜ in the equation and use (3.1), then we have 𝑏2π‘˜ξ€·π‘π‘”π‘‹,π½πœ‰π‘˜ξ€Έ=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀),(3.8) because πœ‚π‘–(π½πœ‰π‘˜)=0 by (3.6). Replacing 𝑋 by π½πœ‰π‘˜ in this equation, we obtain 𝑏4π‘˜π‘=0. Since π‘π‘˜β‰ 0, we have 𝑐=0.
Assume that π‘π‘˜=0. Then, taking the scalar product with πœ‰π‘˜ to both sides of (3.4) and using (2.28) and (3.1), we obtain4π‘Ÿξ“π‘–=1ξ‚†π‘”ξ‚€π΄βˆ—πœ‰π‘–π‘‹,π΄βˆ—πœ‰π‘˜π‘Œξ‚ξ‚€π΄βˆ’π‘”βˆ—πœ‰π‘–π‘Œ,π΄βˆ—πœ‰π‘˜π‘‹πœ‚ξ‚ξ‚‡π‘–ξ€½βˆ’(𝑍)=𝑐𝑔(π½π‘Œ,𝑍)𝑔𝑋,π½πœ‰π‘˜ξ€Έβˆ’ξ€·π‘”(𝐽𝑍,𝑋)π‘”π‘Œ,π½πœ‰π‘˜ξ€Έ+2𝑔(𝐽𝑋,π‘Œ)𝑔𝑍,π½πœ‰π‘˜ξ€Έξ€Ύ,βˆ€π‘‹,π‘Œ,π‘βˆˆΞ“(𝑇𝑀).(3.9) Replace 𝑍 by π½π‘π‘˜ and π‘Œ by πœ‰π‘˜ in this equation and use (3.1), then we have 𝑐𝑔𝑋,π½πœ‰π‘˜ξ€Έ=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀),(3.10) because πœ‚π‘–(π½π‘π‘˜)=0 by (3.6) and 𝑔(π½πœ‰π‘˜,π½π‘π‘˜)=1. Replace 𝑋 by π½π‘π‘˜ in this equation, we get 𝑐=0.

Corollary 3.5. There exist no irrotational generic π‘Ÿ-lightlike submanifolds 𝑀 of an indefinite cosymplectic space form 𝑀(𝑐) with 𝑐≠0.

Proposition 3.6. Let 𝑀 be an π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. Then the characteristic vector field 𝜁 does not belong to Rad(𝑇𝑀) and ltr(𝑇𝑀).

Proof. Assume that 𝜁 belongs to Rad(𝑇𝑀) (or ltr(𝑇𝑀)). Then (3.1) deduces to βˆ‘πœ=π‘Ÿπ‘–=1π‘Žπ‘–πœ‰π‘– [or βˆ‘πœ=π‘Ÿπ‘–=1𝑏𝑖𝑁𝑖]. From this, we have 1=𝑔(𝜁,𝜁)=π‘Ÿξ“π‘–,𝑗=1π‘Žπ‘–π‘Žπ‘—π‘”ξ€·πœ‰π‘–,πœ‰π‘—ξ€Έξƒ¬=0or1=𝑔(𝜁,𝜁)=π‘Ÿξ“π‘–,𝑗=1𝑏𝑖𝑏𝑗𝑔𝑁𝑖,𝑁𝑗=0.(3.11) It is a contradiction. Thus 𝜁 does not belong to Rad(𝑇𝑀) and ltr(𝑇𝑀).

4. Generic Lightlike Submanifolds

If the characteristic vector field 𝜁 is tangent to 𝑀, then, by Proposition 3.6, 𝜁 does not belong to Rad(𝑇𝑀). This enables one to choose a screen distribution 𝑆(𝑇𝑀) which contains 𝜁. This implies that if 𝜁 is tangent to 𝑀, then it belongs to 𝑆(𝑇𝑀). CΔƒlin also proved this result in his book [11] which Kang et al. [12] and Duggal and Sahin [5, 8] assumed in their papers. We also assumed this result in this paper. In this case, all of the functions π‘Žπ‘–, 𝑏𝑖, and 𝑒𝛼 on 𝑀, defined by (3.5), vanish identically.

Theorem 4.1. Let 𝑀 be a generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. Then 𝜁 is a parallel vector field on 𝑀 and 𝑆(𝑇𝑀). Furthermore 𝜁 is conjugate to any vector field on M with respect to β„Ž and β„Žβˆ—π‘–. In particular, 𝜁 is an asymptotic vector field on 𝑀.

Proof. Replace π‘Œ by 𝜁 to (2.6) and use (3.3) and πœβˆˆΞ“(𝑇𝑀), we get βˆ‡π‘‹πœ+π‘Ÿξ“π‘—=1β„Žβ„“π‘—(𝑋,𝜁)𝑁𝑗+𝑛𝛽=π‘Ÿ+1β„Žπ‘ π›½(𝑋,𝜁)𝐸𝛽=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.1) Taking the scalar product with πœ‰π‘– and 𝐸𝛼 in this equation by turns, we have βˆ‡π‘‹πœ=0,β„Žβ„“π‘–(𝑋,𝜁)=0,β„Žπ‘ π›Ό(𝑋,𝜁)=0.(4.2) Thus 𝜁 is parallel on 𝑀 and conjugate to any vector field on 𝑀 with respect to β„Ž. Replace π‘ƒπ‘Œ by 𝜁 to (2.9) and use (4.2) and πœβˆˆΞ“(𝑆(𝑇𝑀)), we have βˆ‡βˆ—π‘‹πœ+π‘Ÿξ“π‘—=1β„Žβˆ—π‘—(𝑋,𝜁)πœ‰π‘—=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.3) Taking the scalar product with 𝑁𝑖 to this equation we have βˆ‡βˆ—π‘‹πœ=0,β„Žβˆ—π‘–(𝑋,𝜁)=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.4) Thus 𝜁 is also parallel on 𝑆(𝑇𝑀) and conjugate to any vector field on 𝑀 with respect to β„Žβˆ—. Thus we have our assertions.

Definition 4.2. An π‘Ÿ-lightlike submanifold 𝑀 of 𝑀 is said to be totally umbilical [13] if there is a smooth vector field β„‹βˆˆΞ“(tr(𝑇𝑀)) such that β„Ž(𝑋,π‘Œ)=ℋ𝑔(𝑋,π‘Œ),βˆ€π‘‹,π‘ŒβˆˆΞ“(𝑇𝑀).(4.5) In case β„‹=0, we say that 𝑀 is totally geodesic.
It is easy to see that 𝑀 is totally umbilical if and only if, on each coordinate neighborhood 𝒰, there exist smooth functions π’œπ‘– and ℬ𝛼 such thatβ„Žβ„“π‘–(𝑋,π‘Œ)=π’œπ‘–π‘”(𝑋,π‘Œ),β„Žπ‘ π›Ό(𝑋,π‘Œ)=ℬ𝛼𝑔(𝑋,π‘Œ),βˆ€π‘‹,π‘ŒβˆˆΞ“(𝑇𝑀).(4.6)

Theorem 4.3. Let 𝑀 be a totally umbilical generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. Then 𝑀 is totally geodesic.

Proof. From (4.2) and (4.6), we obtain π’œπ‘–π‘”(𝑋,𝜁)=0,ℬ𝛼𝑔(𝑋,𝜁)=0.(4.7) Replace 𝑋 by 𝜁 to this equations and use 𝑔(𝜁,𝜁)=1, we have π’œπ‘–=0 for all 𝑖 and ℬ𝛼=0 for all 𝛼. Thus 𝑀 is totally geodesic.

Definition 4.4. A screen distribution 𝑆(𝑇𝑀) of 𝑀 is said to be totally umbilical [13] in 𝑀 if, for each locally second fundamental form β„Žβˆ—π‘–, there exist smooth functions π’žπ‘– on any coordinate neighborhood 𝒰 in 𝑀 such that β„Žβˆ—π‘–(𝑋,π‘ƒπ‘Œ)=π’žπ‘–π‘”(𝑋,π‘Œ),βˆ€π‘‹,π‘ŒβˆˆΞ“(𝑇𝑀).(4.8) In case π’žπ‘–=0 for all 𝑖, we say that 𝑆(𝑇𝑀) is totally geodesic in 𝑀.
Due to (2.18) and (4.8), we know that 𝑆(𝑇𝑀) is totally umbilical in 𝑀 if and only if each shape operators 𝐴𝑁𝑖 of 𝑆(𝑇𝑀) satisfies𝑔𝐴𝑁𝑖𝑋,π‘ƒπ‘Œ=π’žπ‘–π‘”(𝑋,π‘ƒπ‘Œ),βˆ€π‘‹,π‘ŒβˆˆΞ“(𝑇𝑀),(4.9) for some smooth functions π’žπ‘– on π’°βŠ†π‘€.

Theorem 4.5. Let 𝑀 be a generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀 such that 𝑆(𝑇𝑀) is totally umbilical in 𝑀. Then 𝑆(𝑇𝑀) is totally geodesic in 𝑀.

Proof. As 𝑆(𝑇𝑀) is totally umbilical in 𝑀. Replace π‘Œ by 𝜁 to (4.8) and use (4.4), we have π’žπ‘–π‘”(𝑋,𝜁)=0 for all π‘‹βˆˆΞ“(𝑇𝑀). Replace 𝑋 by 𝜁 to this equation and use the fact 𝑔(𝜁,𝜁)=1, we obtain π’žπ‘–=0 for all 𝑖.
From (3.6), the screen distribution 𝑆(𝑇𝑀) splits as follows:𝑆(𝑇𝑀)={𝐽(Rad(𝑇𝑀))βŠ•π½(ltr(𝑇𝑀))}βŠ•orthπ½ξ€·π‘†ξ€·π‘‡π‘€βŸ‚βŠ•ξ€Έξ€Έorthπ»π‘œ,(4.10) where π»π‘œ is a non-degenerate almost complex distribution π»π‘œ on 𝑀 with respect to 𝐽, that is, 𝐽(π»π‘œ)=π»π‘œ. Thus the general decompositions of 𝑇𝑀 and 𝑇𝑀 in (2.1) and (2.4) reduce, respectively, to 𝑇𝑀=π»βŠ•π»ξ…ž,𝑇𝑀=π»βŠ•π»ξ…žβŠ•tr(𝑇𝑀),(4.11) where 𝐻 and π»ξ…ž are 2π‘Ÿ- and π‘Ÿ-lightlike distributions on 𝑀 such that 𝐻=Rad(𝑇𝑀)βŠ•orth𝐽(Rad(𝑇𝑀))βŠ•orthπ»π‘œ,𝐻′=𝐽(ltr(𝑇𝑀))βŠ•orthπ½ξ€·π‘†ξ€·π‘‡π‘€βŸ‚.ξ€Έξ€Έ(4.12) In this case, 𝐻 is an almost complex distribution of 𝑀 with respect to 𝐽. Consider the local null vector fields π‘ˆπ‘– and 𝑉𝑖 on 𝑆(𝑇𝑀) and the local nonnull vector field π‘Šπ›Ό on 𝑆(𝑇𝑀) defined respectively by π‘ˆπ‘–=βˆ’π½π‘π‘–,𝑉𝑖=βˆ’π½πœ‰π‘–,π‘Šπ›Ό=βˆ’π½πΈπ›Ό.(4.13) Denote by 𝑆 the projection morphism of 𝑇𝑀 on 𝐻 with respect to the decomposition (4.11). Then any vector field 𝑋 on 𝑀 is expressed as follows: 𝑋=𝑆𝑋+π‘Ÿξ“π‘–=1𝑒𝑖(𝑋)π‘ˆπ‘–+π‘šξ“π›Ό=π‘Ÿ+1𝑀𝛼(𝑋)π‘Šπ›Ό,𝐽𝑋=𝐹𝑋+π‘Ÿξ“π‘–=1𝑒𝑖(𝑋)𝑁𝑖+π‘šξ“π›Ό=π‘Ÿ+1𝑀𝛼(𝑋)𝐸𝛼,(4.14) where 𝑒𝑖, 𝑣𝑖, and 𝑀𝛼 are 1-forms locally defined on 𝑀 by 𝑒𝑖(𝑋)=𝑔𝑋,𝑉𝑖,𝑣𝑖(𝑋)=𝑔𝑋,π‘ˆπ‘–ξ€Έ,𝑀𝑖(𝑋)=πœ–π›Όπ‘”ξ€·π‘‹,𝐸𝛼,(4.15) and 𝐹 is a tensor field of (1,1)-type globally defined on 𝑀 by 𝐹𝑋=𝐽𝑆𝑋,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.16) Apply 𝐽 to (2.6), (2.7), (2.8), and (2.24) and use (4.13) and (4.14), we have β„Žβ„“π‘—ξ€·π‘‹,π‘ˆπ‘–ξ€Έ=β„Žβˆ—π‘–ξ€·π‘‹,𝑉𝑗,β„Žβˆ—π‘–ξ€·π‘‹,π‘Šπ›Όξ€Έ=πœ–π›Όβ„Žπ‘ π›Όξ€·π‘‹,π‘ˆπ‘–ξ€Έ,β„Ž(4.17)ℓ𝑗𝑋,𝑉𝑖=β„Žβ„“π‘–ξ€·π‘‹,𝑉𝑗,β„Žβ„“π‘–ξ€·π‘‹,π‘Šπ›Όξ€Έ=πœ–π›Όβ„Žπ‘ π›Όξ€·π‘‹,𝑉𝑖,β„Ž(4.18)ℓ𝑖𝑋,π‘Šπ›Όξ€Έ=πœ–π›Όβ„Žπ‘ π›Όξ€·π‘‹,𝑉𝑖,πœ–π›½β„Žπ‘ π›½ξ€·π‘‹,π‘Šπ›Όξ€Έ=πœ–π›Όβ„Žπ‘ π›Όξ€·π‘‹,π‘Šπ›½ξ€Έ,βˆ‡(4.19)π‘‹π‘ˆπ‘–ξ€·π΄=𝐹𝑁𝑖𝑋+π‘Ÿξ“π‘—=1πœπ‘–π‘—(𝑋)π‘ˆπ‘—+π‘Ÿξ“π›Ό=π‘Ÿ+1πœŒπ‘–π›Ό(𝑋)π‘Šπ›Ό,βˆ‡(4.20)𝑋𝑉𝑖𝐴=πΉβˆ—πœ‰π‘–π‘‹ξ‚βˆ’π‘Ÿξ“π‘—=1πœπ‘—π‘–(𝑋)π‘‰π‘—βˆ’π‘Ÿξ“π›Ό=π‘Ÿ+1πœ–π›Όπœ™π›Όπ‘–(𝑋)π‘Šπ›Ό+π‘Ÿξ“π‘—=1β„Žβ„“π‘—ξ€·π‘‹,πœ‰π‘–ξ€Έπ‘ˆπ‘—,βˆ‡(4.21)π‘‹π‘Šπ›Όξ€·π΄=𝐹𝐸𝛼𝑋+π‘Ÿξ“π‘–=1πœ™π›Όπ‘–(𝑋)π‘ˆπ‘–+𝑛𝛽=π‘Ÿ+1πœŽπ›Όπ›½(𝑋)π‘Šπ›½,ξ€·βˆ‡(4.22)𝑋𝐹(π‘Œ)=π‘Ÿξ“π‘–=1𝑒𝑖(π‘Œ)𝐴𝑁𝑖𝑋+𝑛𝛼=π‘Ÿ+1𝑀𝛼(π‘Œ)π΄πΈπ›Όπ‘‹βˆ’π‘Ÿξ“π‘–=1β„Žβ„“π‘–(𝑋,π‘Œ)π‘ˆπ‘–βˆ’π‘›ξ“π›Ό=π‘Ÿ+1β„Žπ‘ π›Ό(𝑋,π‘Œ)π‘Šπ›Ό.(4.23)

Theorem 4.6. Let 𝑀 be a generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. Then 𝐻 is integrable if and only if β„Ž(𝑋,πΉπ‘Œ)=β„Ž(𝐹𝑋,π‘Œ),βˆ€π‘‹,π‘ŒβˆˆΞ“(𝐻).(4.24) Moreover, if 𝑀 is totally umbilical, then 𝐻 is a parallel distribution on M.

Proof. Take 𝑋,π‘ŒβˆˆΞ“(𝐻). Then we have πΉπ‘Œ=π½π‘ŒβˆˆΞ“(𝐻). Apply βˆ‡π‘‹ to πΉπ‘Œ=π½π‘Œ and use (2.6), (3.2), (4.13), and (4.14), we have β„Žβ„“π‘–(ξ€·βˆ‡π‘‹,πΉπ‘Œ)=π‘”π‘‹π‘Œ,𝑉𝑖,β„Žπ‘ π›Ό(𝑋,πΉπ‘Œ)=πœ–π›Όπ‘”ξ€·βˆ‡π‘‹π‘Œ,π‘Šπ›Όξ€Έ,ξ€·βˆ‡(4.25)𝑋𝐹(π‘Œ)=βˆ’π‘Ÿξ“π‘–=1β„Žβ„“π‘–(𝑋,π‘Œ)π‘ˆπ‘–βˆ’π‘šξ“π›Ό=π‘Ÿ+1β„Žπ‘ π›Ό(𝑋,π‘Œ)π‘Šπ›Ό.(4.26) By directed calculations from two equations of (4.25), we have β„Ž(𝑋,πΉπ‘Œ)βˆ’β„Ž(𝐹𝑋,π‘Œ)=π‘Ÿξ“π‘–=1𝑔[]𝑋,π‘Œ,𝑉𝑖𝑁𝑖+π‘šξ“π›Ό=π‘Ÿ+1πœ–π›Όπ‘”ξ€·[]𝑋,π‘Œ,π‘Šπ›Όξ€ΈπΈπ›Ό.(4.27) If 𝐻 is an integrable distribution on 𝑀, then we have [𝑋,π‘Œ]βˆˆΞ“(𝐻) for any 𝑋,π‘ŒβˆˆΞ“(𝐻). This implies 𝑔([𝑋,π‘Œ],𝑉𝑖)=𝑔([𝑋,π‘Œ],π‘Šπ›Ό)=0 for all 𝑖 and 𝛼. Therefore we obtain β„Ž(𝑋,πΉπ‘Œ)=β„Ž(𝐹𝑋,π‘Œ) for all 𝑋,π‘ŒβˆˆΞ“(𝐻). Conversely if β„Ž(𝑋,πΉπ‘Œ)=β„Ž(𝐹𝑋,π‘Œ) for all 𝑋,π‘ŒβˆˆΞ“(𝐻), then we have 𝑔([𝑋,π‘Œ],𝑉𝑖)=𝑔([𝑋,π‘Œ],π‘Šπ›Ό)=0 for all 𝑖 and 𝛼. This implies [𝑋,π‘Œ]βˆˆΞ“(𝐻) for all 𝑋,π‘ŒβˆˆΞ“(𝐻). Thus 𝐻 is an integrable distribution of 𝑀.
If 𝑀 is totally umbilical, from Theorem 4.3 and (4.25), we haveπ‘”ξ€·βˆ‡π‘‹π‘Œ,π‘‰π‘–ξ€Έξ€·βˆ‡=π‘”π‘‹π‘Œ,π‘Šπ›Όξ€Έ=0,βˆ€π‘–,𝛼.(4.28) This implies βˆ‡π‘‹π‘ŒβˆˆΞ“(𝐻) for all 𝑋,π‘ŒβˆˆΞ“(𝐻). Thus 𝐻 is a parallel distribution on 𝑀.

Theorem 4.7. Let 𝑀 be a generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. Then 𝐹 is parallel on 𝐻 with respect to βˆ‡ if and only if 𝐻 is a parallel distribution on𝑀.

Proof. Assume that 𝐹 is parallel on 𝐻 with respect to βˆ‡. For any 𝑋,π‘ŒβˆˆΞ“(𝐻), we have (βˆ‡π‘‹πΉ)π‘Œ=0. Taking the scalar product with π‘‰π‘˜ and π‘Šπ›½ to (4.26) with (βˆ‡π‘‹πΉ)π‘Œ=0, we have β„Žβ„“π‘˜(𝑋,π‘Œ)=0 and β„Žπ‘ π›½(𝑋,π‘Œ)=0 for all 𝑋,π‘ŒβˆˆΞ“(𝐻) and for each π‘˜ and 𝛽, respectively. From (4.25), we have 𝑔(βˆ‡π‘‹π‘Œ,𝑉𝑖)=0 and 𝑔(βˆ‡π‘‹π‘Œ,π‘Šπ›Ό)=0. This implies βˆ‡π‘‹π‘ŒβˆˆΞ“(𝐻) for all 𝑋,π‘ŒβˆˆΞ“(𝐻). Thus 𝐻 is a parallel distribution on 𝑀.
Conversely, if 𝐻 is parallel on 𝑀, from (4.25) we haveβ„Žβ„“π‘–(𝑋,πΉπ‘Œ)=0,β„Žπ‘ π›Ό(𝑋,πΉπ‘Œ)=0,βˆ€π‘‹,π‘ŒβˆˆΞ“(𝐻).(4.29) For any π‘ŒβˆˆΞ“(𝐻), we show that 𝐹2π‘Œ=𝐽2π‘Œ=βˆ’π‘Œ+πœƒ(π‘Œ)𝜁. Replace π‘Œ by πΉπ‘Œ to the equations and use (4.2), we have β„Žβ„“π‘–(𝑋,π‘Œ)=0 and β„Žπ‘ π›Ό(𝑋,π‘Œ)=0 for any 𝑋,π‘ŒβˆˆΞ“(𝐻). Thus 𝐹 is parallel on 𝐻 with respect to βˆ‡ by (4.25).

Theorem 4.8. Let 𝑀 be a generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. If F is parallel on 𝑇𝑀 with respect to βˆ‡, then 𝐻 is a parallel distribution on 𝑀 and 𝑀 is locally a product manifold π‘€π‘ŸΓ—π‘€π‘›βˆ’π‘ŸΓ—π‘€π‘šβˆ’π‘›, where π‘€π‘Ÿ, π‘€π‘›βˆ’π‘Ÿ, and π‘€π‘šβˆ’π‘› are leafs of 𝐽(ltr(𝑇𝑀)), 𝐽(𝑆(π‘‡π‘€βŸ‚)) and 𝐻, respectively.

Proof. Assume that 𝐹 is parallel on 𝑇𝑀 with respect to βˆ‡. Then 𝐹 is parallel on 𝐻 with respect to βˆ‡. By Theorem 4.7, 𝐻 is a parallel distribution on 𝑀. Apply the operator 𝐹 to (4.23) with (βˆ‡π‘‹πΉ)π‘Œ=0, we have π‘Ÿξ“π‘–=1𝑒𝑖𝐴(π‘Œ)𝐹𝑁𝑖𝑋+𝑛𝛼=π‘Ÿ+1𝑒𝛼𝐴(π‘Œ)𝐹𝐸𝛼𝑋=0,βˆ€π‘‹,π‘ŒβˆˆΞ“(𝑇𝑀),(4.30) due to πΉπ‘ˆπ‘–=πΉπ‘Šπ›Ό=0 for all 𝑖 and 𝛼. Replace π‘Œ by π‘ˆπ‘˜ and π‘Šπ›½ to this equation by turns and use (4.15), we have 𝐹(𝐴𝑁𝑖𝑋)=0 and 𝐹(𝐴𝐸𝛼𝑋)=0. Taking the scalar product with π‘Šπ›½ and π‘π‘˜ to (4.23) with (βˆ‡π‘‹πΉ)π‘Œ=0 by turns, we have β„Žπ‘ π›Ό(X,π‘Œ)=π‘Ÿξ“π‘–=1𝑒𝑖(π‘Œ)𝑀𝛼𝐴𝑁𝑖𝑋+π‘šξ“π›½=π‘Ÿ+1𝑀𝛽(π‘Œ)𝑀𝛼𝐴𝐸𝛽𝑋,(4.31)π‘Ÿξ“π‘–=1𝑒𝑖𝐴(π‘Œ)𝑔𝑁𝑖𝑋,π‘π‘˜ξ€Έ+π‘šξ“π›Ό=π‘Ÿ+1𝑀𝛼𝐴(π‘Œ)𝑔𝐸𝛼𝑋,π‘π‘˜ξ€Έ=0,(4.32) for all 𝑋,π‘ŒβˆˆΞ“(𝑇𝑀). Replace π‘Œ by πœ‰π‘— to (4.31), we get πœ™π›Όπ‘—(𝑋)=0 due to (2.23). Also replace π‘Œ by π‘Šπ›½ to (4.32), we have πœŒπ‘˜π›½(𝑋)=0 due to (2.17). From this results, (4.11) and (4.14), we get βˆ‡π‘‹π‘ˆπ‘–=π‘Ÿξ“π‘—=1πœπ‘–π‘—(𝑋)π‘ˆπ‘—,βˆ‡π‘‹π‘Šπ›Ό=π‘šξ“π›½=π‘Ÿ+1πœŽπ›Όπ›½(𝑋)π‘Šπ›½,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.33) Thus 𝐽(ltr(𝑇𝑀)) and 𝐽(𝑆(π‘‡π‘€βŸ‚)) are also parallel distributions on 𝑀. By the decomposition theorem of de Rham [14], we show that 𝑀=π‘€π‘ŸΓ—π‘€π‘›βˆ’π‘ŸΓ—π‘€π‘šβˆ’π‘›, where π‘€π‘Ÿ,π‘€π‘›βˆ’π‘Ÿ, and π‘€π‘šβˆ’π‘› are some leafs of 𝐽(ltr(𝑇𝑀)), 𝐽(𝑆(π‘‡π‘€βŸ‚)) and 𝐻, respectively.

Theorem 4.9. Let 𝑀 be a generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀. One has the following assertions.(i)If each 𝑉𝑖 is parallel with respect to βˆ‡, then πœπ‘–π‘—=πœ™π›Όπ‘–=β„Žβ„“(𝑋,πœ‰π‘–)=0. In this case 𝑀 is irrotational. Moreover, one hasπ΄βˆ—πœ‰π‘–π‘‹=π‘Ÿξ“π‘—=1π‘’π‘—ξ‚€π΄βˆ—πœ‰π‘–π‘‹ξ‚π‘ˆπ‘—+π‘šξ“π›Ό=π‘Ÿ+1π‘€π›Όξ‚€π΄βˆ—πœ‰π‘–π‘‹ξ‚π‘Šπ›Ό,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.34)(ii)If each π‘ˆπ‘– is parallel with respect to βˆ‡, then πœπ‘–π‘—=πœŒπ‘–π›Ό=0 and𝐴𝑁𝑖𝑋=r𝑗=1π‘’π‘—ξ€·π΄π‘π‘–π‘‹ξ€Έπ‘ˆπ‘—+π‘šξ“π›Ό=π‘Ÿ+1π‘€π›Όξ€·π΄π‘π‘–π‘‹ξ€Έπ‘Šπ›Ό,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.35)(iii)If each π‘Šπ›Ό is parallel with respect to βˆ‡, then πœ™π›Όπ‘–=0 and𝐴𝐸𝛼𝑋=π‘Ÿξ“π‘–=1π‘’π‘–ξ€·π΄πΈπ›Όπ‘‹ξ€Έπ‘ˆπ‘–+π‘šξ“π›½=π‘Ÿ+1π‘€π›½ξ€·π΄πΈπ›Όπ‘‹ξ€Έπ‘Šπ›½,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.36) Moreover, if all of 𝑉𝑖, π‘ˆπ‘–, and π‘Šπ›Ό are parallel on TM with respect to βˆ‡, then 𝑆(𝑇𝑀) is totally geodesic in 𝑀 and πœπ‘–π‘—=πœ™π›Όπ‘–=πœŒπ‘–π›Ό=0 on Ξ“(𝑇𝑀). In this case, each null transversal vector fields 𝑁𝑖 of 𝑀 is a constant on 𝑀.

Proof. If 𝑉𝑖 is parallel with respect to βˆ‡, then, taking the scalar product with π‘ˆπ‘˜, π‘Šπ›½, and π‘‰π‘˜ to (4.21) by turns, we have πœπ‘˜π‘–(𝑋)=0, πœ™π›½π‘–(𝑋)=0 and β„Žβ„“π‘˜(𝑋,πœ‰π‘–)=0, respectively. Thus 𝑀 is irrotational. We have 𝐹(π΄βˆ—πœ‰π‘–π‘‹)=0 for all π‘‹βˆˆΞ“(𝑇𝑀). From this result and (4.14), we obtain π½ξ‚€π΄βˆ—πœ‰π‘–π‘‹ξ‚=π‘Ÿξ“π‘—=1π‘’π‘—ξ‚€π΄βˆ—πœ‰π‘–π‘‹ξ‚π‘π‘—+π‘šξ“π›Ό=π‘Ÿ+1π‘€π›Όξ‚€π΄βˆ—πœ‰π‘–π‘‹ξ‚πΈπ›Ό.(4.37) Apply 𝐽 to this equation and use πœƒ(π΄βˆ—πœ‰π‘‹π‘–)=0, we obtain (i). In a similar way, by using (4.13), (4.14), (4.20), and (4.22), we have (ii) and (iii).
Assume that all of 𝑉, π‘ˆ and π‘Š are parallel on 𝑇𝑀 with respect to βˆ‡. Substituting the equation of (i) into (4.17)-1, we have𝑒𝑗𝐴𝑁𝑖𝑋=π‘£π‘–ξ‚€π΄βˆ—πœ‰π‘—π‘‹ξ‚ξ‚€π΄=π‘”βˆ—πœ‰π‘—π‘‹,π‘ˆπ‘–ξ‚=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.38) Also, substituting the equation of (iii) into (4.17)-2, we have 𝑀𝛼𝐴𝑁𝑖𝑋=πœ–π›Όπ‘£π‘–ξ€·π΄πΈπ›Όπ‘‹ξ€Έξ€·π΄=𝑔𝐸𝛼𝑋,π‘ˆπ‘–ξ€Έ=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀).(4.39) From the last two equations and the equation of (ii), we see that 𝐴𝑁𝑖𝑋=0 for all π‘‹βˆˆΞ“(𝑇𝑀). From this and (2.18) we see that 𝑆(𝑇𝑀) is totally geodesic in 𝑀 and all 1-forms πœπ‘–π‘—, πœ™π›Όπ‘–, and πœŒπ‘–π›Ό, defined by (2.7) and (2.8), vanish identically. Using the results and (2.7), we show that 𝑁 is a constant on 𝑀.

Theorem 4.10. Let 𝑀 be a totally umbilical generic π‘Ÿ-lightlike submanifold of an indefinite cosymplectic manifold 𝑀 such that 𝑆(𝑇𝑀) is totally umbilical. Then M is locally a product manifold π‘€π‘ŸΓ—π‘€π‘ Γ—π‘€π‘‘, where π‘€π‘Ÿ, 𝑀𝑠, and 𝑀𝑑 are some leafs of Rad(𝑇𝑀), π»βŸ‚π‘œ=Span{𝑉𝑖,π‘ˆπ‘–,π‘Šπ›Ό} and π»π‘œ, respectively, and 𝑠=𝑛+π‘Ÿ,𝑑=π‘šβˆ’π‘›βˆ’2π‘Ÿ.

Proof. By Theorem 4.6, 𝐻 is a parallel distribution 𝑀. Thus, for all 𝑋,π‘ŒβˆˆΞ“(π»π‘œ), we have βˆ‡π‘‹π‘ŒβˆˆΞ“(𝐻). From (2.9) and (4.26), we have β„Žβˆ—π‘–ξ€·βˆ‡(𝑋,πΉπ‘Œ)=π‘”π‘‹πΉπ‘Œ,π‘π‘–ξ€Έβˆ‡=π‘”ξ€·ξ€·π‘‹πΉξ€Έξ€·βˆ‡π‘Œ+πΉπ‘‹π‘Œξ€Έ,π‘π‘–ξ€Έξ€·πΉξ€·βˆ‡=π‘”π‘‹π‘Œξ€Έ,π‘π‘–ξ€Έξ€·βˆ‡=βˆ’π‘”π‘‹π‘Œ,π½π‘π‘–ξ€Έξ€·βˆ‡=π‘”π‘‹π‘Œ,π‘ˆπ‘–ξ€Έ,(4.40) due to πΉπ‘ŒβˆˆΞ“(π»π‘œ). If 𝑆(𝑇𝑀) is totally umbilical in 𝑀, then we have β„Žβˆ—π‘–=0 due to Theorem 4.5. By (2.9) and (4.40), we get π‘”ξ€·βˆ‡π‘‹π‘Œ,π‘π‘–ξ€Έξ€·βˆ‡=0,π‘”π‘‹π‘Œ,π‘ˆπ‘–ξ€Έξ€·π»=0,βˆ€π‘‹βˆˆΞ“(𝑇𝑀),βˆ€π‘ŒβˆˆΞ“π‘œξ€Έ.(4.41) These results and (4.25) imply βˆ‡π‘‹π‘ŒβˆˆΞ“(π»π‘œ) for all 𝑋,π‘ŒβˆˆΞ“(π»π‘œ). Thus π»π‘œ is a parallel distribution on 𝑆(𝑇𝑀) and 𝑇𝑀=π»π‘œβŠ•orthπ»βŸ‚π‘œ, where π»βŸ‚π‘œ=Span{πœ‰π‘–,𝑉𝑖,π‘ˆπ‘–,π‘Šπ›Ό}. By Theorems 4.3 and 4.5, we have β„Žβ„“π‘–=β„Žπ‘ π›Ό=𝐴𝑁𝑖=πœ™π›Όπ‘–=0 and π΄πΈπ›Όβˆ‘π‘‹=π‘Ÿπ‘–=1πœŒπ‘–π›Ό(𝑋)πœ‰π‘–. Thus (2.10) and (4.20)~(4.22) deduce, respectively, to βˆ‡π‘‹π‘ˆπ‘–=π‘Ÿξ“π‘—=1πœπ‘–π‘—(𝑋)π‘ˆπ‘—+π‘šξ“π›Ό=π‘Ÿ+1πœŒπ‘–π›Ό(𝑋)π‘Šπ›Ό,βˆ‡π‘‹π‘‰π‘–=βˆ’π‘Ÿξ“π‘—=1πœπ‘—π‘–(𝑋)𝑉𝑗+π‘Ÿξ“π‘—=1β„Žβ„“π‘—ξ€·π‘‹,πœ‰π‘–ξ€Έπ‘ˆπ‘—,βˆ‡π‘‹π‘Šπ›Ό=βˆ’π‘Ÿξ“π‘–=1πœŒπ‘–π›Ό(𝑋)𝑉𝑗+π‘šξ“π›½=π‘Ÿ+1πœŽπ›Όπ›½(𝑋)π‘Šπ›½,βˆ‡π‘‹πœ‰=βˆ’π‘Ÿξ“π‘—=1πœπ‘—π‘–(𝑋)πœ‰π‘—ξ€·π»,βˆ€π‘‹βˆˆΞ“βŸ‚π‘œξ€Έ.(4.42) Thus π»βŸ‚π‘œ is also a parallel distribution on 𝑀. Thus we have 𝑀=π‘€π‘ŸΓ—π‘€π‘ Γ—π‘€π‘‘, where π‘€π‘Ÿ, 𝑀𝑠, and 𝑀𝑑 are some leafs of Rad(𝑇𝑀), π»βŸ‚π‘œ=Span{𝑉𝑖,π‘ˆπ‘–,π‘Šπ›Ό} and π»π‘œ, respectively, and 𝑠=𝑛+π‘Ÿ,𝑑=π‘šβˆ’π‘›βˆ’2π‘Ÿ.

Acknowledgment

The authors are thankful to the referee for making various constructive suggestions and corrections towards improving the final version of this paper.