Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2011, Article ID 720304, 13 pages
http://dx.doi.org/10.1155/2011/720304
Research Article

System Identification and Prediction of Dengue Fever Incidence in Rio de Janeiro

1Escola de Engenharia, Universidade Presbiteriana Mackenzie, Rua da Consolação 896, 01302-907 São Paulo, SP, Brazil
2Departamento de Engenharia de Telecomunicações e Controle, Escola Politécnica, Universidade de São Paulo, Avenida Professor Luciano Gualberto, Travessa 3 380, 05508-900 São Paulo, SP, Brazil

Received 10 December 2010; Revised 17 April 2011; Accepted 15 May 2011

Academic Editor: J. Jiang

Copyright © 2011 D. O. Gerardi and L. H. A. Monteiro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, UK, 1992.
  2. S. Wolfram, Cellular Automata and Complexity: Collected Papers, Westview Press, New York, NY, USA, 1994.
  3. E. Ahmed, H. N. Agiza, and S. Z. Hassan, “On modeling hepatitis B transmission using cellular automata,” Journal of Statistical Physics, vol. 92, no. 3-4, pp. 707–712, 1998. View at Google Scholar · View at Scopus
  4. L. H. A. Monteiro, H. D. B. Chimara, and J. G. C. Berlinck, “Big cities: shelters for contagious diseases,” Ecological Modelling, vol. 197, no. 1-2, pp. 258–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. H. T. Schimit and L. H. A. Monteiro, “On the basic reproduction number and the topological properties of the contact network: an epidemiological study in mainly locally connected cellular automata,” Ecological Modelling, vol. 220, no. 7, pp. 1034–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. J. Newman, “Spread of epidemic disease on networks,” Physical Review E, vol. 66, no. 1, Article ID 016128, 11 pages, 2002. View at Publisher · View at Google Scholar
  7. J. D. Murray, Mathematical Biology. I: An Introduction, vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 3rd edition, 2002.
  8. M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the edge of chaos: evolving cellular automata to perform computations,” Complex Systems, vol. 7, pp. 89–130, 1993. View at Google Scholar
  9. S. A. Billings and Y. Yang, “Identification of probabilistic cellular automata,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 33, no. 2, pp. 225–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Ganguly, P. Maji, B. K. Sikdar, and P. P. Chaudhuri, “Design and characterization of cellular automata based associative memory for pattern recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 1, pp. 672–679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. P. B. de Oliveira, J. C. Bortot, and G. M. B. Oliveira, “The best currently known class of dynamically equivalent cellular automata rules for density classification,” Neurocomputing, vol. 70, no. 1–3, pp. 35–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. H. A. Monteiro, D. N. Oliveira, and J. G. Chaui-Berlinck, “The effect of spatial scale on predicting time series: a study on epidemiological system identification,” Mathematical Problems in Engineering, vol. 2009, Article ID 137854, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Gubler, “Dengue and dengue hemorrhagic fever,” Clinical Microbiology Reviews, vol. 11, no. 3, pp. 480–496, 1998. View at Google Scholar · View at Scopus
  14. M. G. Guzman and G. Kouri, “Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges,” Journal of Clinical Virology, vol. 27, no. 1, pp. 1–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Kyle and E. Harris, “Global spread and persistence of dengue,” Annual Review of Microbiology, vol. 62, pp. 71–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. W. J. H. McBride and H. Bielefeldt-Ohmann, “Dengue viral infections; pathogenesis and epidemiology,” Microbes and Infection, vol. 2, no. 9, pp. 1041–1050, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. N. A. Honório, R. M. R. Nogueira, C. T. Codeço et al., “Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil,” PLoS Neglected Tropical Diseases, vol. 3, no. 11, article no. e545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Romano, A. M. de Matos, E. S. A. Araújo et al., “Characterization of dengue virus type 2: new insights on the 2010 brazilian epidemic,” PLoS One, vol. 5, no. 7, Article ID e11811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. M. Luz, B. V. M. Mendes, C. T. Codeço, C. J. Struchiner, and A. P. Galvani, “Time series analysis of dengue incidence in Rio de Janeiro, Brazil,” American Journal of Tropical Medicine and Hygiene, vol. 79, no. 6, pp. 933–939, 2008. View at Google Scholar · View at Scopus
  20. L. Lu, H. Lin, L. Tian, W. Yang, J. Sun, and Q. Liu, “Time series analysis of dengue fever and weather in Guangzhou, China,” BMC Public Health, vol. 9, article no. 395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. B. L. Santos, M. C. Costa, S. T. R. Pinho et al., “Periodic forcing in a three-level cellular automata model for a vector-transmitted disease,” Physical Review E, vol. 80, no. 1, Article ID 016102, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. T. Peterson, C. Martínez-Campos, Y. Nakazawa, and E. Martínez-Meyer, “Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 9, pp. 647–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. M. Aburas, B. G. Cetiner, and M. Sari, “Dengue confirmed-cases prediction: a neural network model,” Expert Systems with Applications, vol. 37, no. 6, pp. 4256–4260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Cai, S. Guo, X. Li, and M. Ghosh, “Global dynamics of a dengue epidemic mathematical model,” Chaos, Solitons and Fractals, vol. 42, no. 4, pp. 2297–2304, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. L. Esteva and C. Vargas, “A model for dengue disease with variable human population,” Journal of Mathematical Biology, vol. 38, no. 3, pp. 220–240, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. L. T. Takahashi, N. A. Maidana, W. Castro Ferreira, Jr., P. Pulino, and H. M. Yang, “Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind,” Bulletin of Mathematical Biology, vol. 67, no. 3, pp. 509–528, 2005. View at Publisher · View at Google Scholar
  27. N. A. Honório, C. T. Codeço, F. C. Alves, M. A. F. M. Magalhes, and R. Lourenço-De-Oliveira, “Temporal distribution of Aedes aegypti in different districts of Rio De Janeiro, Brazil, measured by two types of traps,” Journal of Medical Entomology, vol. 46, no. 5, pp. 1001–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Adams and M. Boots, “The influence of immune cross-reaction on phase structure in resonant solutions of a multi-strain seasonal SIR model,” Journal of Theoretical Biology, vol. 248, no. 1, pp. 202–211, 2007. View at Publisher · View at Google Scholar
  29. S. L. Silva, J. A. Ferreira, and M. L. Martins, “Epidemic spreading in a scale-free network of regular lattices,” Physica A, vol. 377, no. 2, pp. 689–697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Yakowitz, J. Gani, and R. Hayes, “Cellular automaton modeling of epidemics,” Applied Mathematics and Computation, vol. 40, no. 1, pp. 41–54, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. M. A. Fuentes and M. N. Kuperman, “Cellular automata and epidemiological models with spatial dependence,” Physica A, vol. 267, no. 3, pp. 471–486, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, Mass, USA, 1998.
  33. Secretaria Municipal de Saúde do Rio de Janeiro (Health Department of the city of Rio de Janeiro), September 2009, http://www.saude.rio.rj.gov.br/.