Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2011, Article ID 872347, 17 pages
http://dx.doi.org/10.1155/2011/872347
Research Article

Self-Tuning Random Early Detection Algorithm to Improve Performance of Network Transmission

Shenzhen City Key Laboratory of Embedded System Design, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

Received 22 August 2010; Accepted 26 September 2010

Academic Editor: Ming Li

Copyright © 2011 Jianyong Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. G. Bakhoum and C. Toma, “Dynamical aspects of macroscopic and quantum transitions due to coherence function and time series events,” Mathematical Problems in Engineering, vol. 2010, Article ID 428903, 13 pages, 2010. View at Publisher · View at Google Scholar
  2. E. G. Bakhoum and C. Toma, “Relativistic short range phenomena and space-time aspects of pulse measurements,” Mathematical Problems in Engineering, vol. 2008, Article ID 410156, 20 pages, 2008. View at Google Scholar · View at Zentralblatt MATH
  3. M. Li, “Fractal time series—a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article ID 157264, 26 pages, 2010. View at Google Scholar · View at Zentralblatt MATH
  4. S. Y. Chen, Y. F. Li, and J. Zhang, “Vision processing for realtime 3-D data acquisition based on coded structured light,” IEEE Transactions on Image Processing, vol. 17, no. 2, pp. 167–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Y. Chen, Y. F. Li, Q. Guan, and G. Xiao, “Real-time three-dimensional surface measurement by color encoded light projection,” Applied Physics Letters, vol. 89, no. 11, Article ID 111108, 2006. View at Publisher · View at Google Scholar
  6. L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end congestion avoidance on a global internet,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. La and V. Anantharam, “Utility-based rate control in the Internet for elastic traffic,” IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 272–286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, “REM: active queue management,” IEEE Network, vol. 15, no. 3, pp. 48–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Wang, X. T. Ma, and Z. H. Tian, “A fuzzy self-tuning random exponential marking algorithm based on enhanced price,” Computer Simulation, vol. 35, no. 8, pp. 128–146, 2009. View at Google Scholar
  11. S. Kunniyur and R. Srikant, “Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management,” in Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computers Communications (SIGCOMM '01), pp. 123–134, San Diego, Calif, USA, August 2001. View at Publisher · View at Google Scholar
  12. S. B. Lee, K. Hur, J. Park, and D.-S. Eom, “A packet forwarding controller for mobile IP-based networks with packet buffering,” IEEE Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1344–1350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010. View at Publisher · View at Google Scholar
  14. W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring RED gateway,” in Proceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societie (INFOCOM '99), pp. 1320–1328, March 1999. View at Scopus
  15. S. Floyd, R. Gummadi, and S. Schenker, “Adaptive RED: an algorithm for increasing the robustness of RED's active queue management,” 2001, http://www.icir.org/floyd/papers/adaptiveRed.pdf.
  16. P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-RED,” IEEE/ACM Transactions on Networking, vol. 12, no. 6, pp. 1079–1092, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Zhang, J. Yin, Z. Cai, and W. Chen, “RRED: robust RED algorithm to counter low-rate denial-of-service attacks,” IEEE Communications Letters, vol. 14, no. 5, pp. 489–491, 2010. View at Publisher · View at Google Scholar
  18. C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design of controllers for AQM routers supporting TCP flows,” IEEE Transactions on Automatic Control, vol. 47, no. 6, pp. 945–959, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. X.-C. Lu, M.-J. Zhang, and P.-D. Zhu, “Adaptive PI active queue management algorithm,” Journal of Software, vol. 16, no. 5, pp. 903–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Sun, M. Zukerman, and M. Palaniswami, “A stable adaptive PI controller for AQM,” in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT '07), pp. 707–712, Sydney, Australia, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Xiong, Y. Pan, X. Jia, J. H. Park, and Y. Li, “Design and analysis of a self-tuning feedback controller for the Internet,” Computer Networks, vol. 53, no. 11, pp. 1784–1797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Xiong, A. V. Vasilakos, L. T. Yang et al., “A novel self-tuning feedback controller for active queue management supporting TCP flows,” Information Sciences, vol. 180, no. 11, pp. 2249–2263, 2010. View at Publisher · View at Google Scholar
  23. S. Liu, T. Başar, and R. Srikant, “Exponential-RED: a stabilizing AQM scheme for low- and high-speed TCP protocols,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1068–1081, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Guo, X. Liao, C. Li, and D. Yang, “Stability analysis of a novel exponential-RED model with heterogeneous delays,” Computer Communications, vol. 30, no. 5, pp. 1058–1074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou, “LRED: a robust and responsive AQM algorithm using packet loss ratio measurement,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 1, pp. 29–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Ariba, F. Gouaisbaut, and Y. Labit, “Feedback control for router management and TCP/IP network stability,” IEEE Transactions on Network and Service Management, vol. 6, no. 4, pp. 255–266, 2009. View at Publisher · View at Google Scholar
  27. B. Hariri and N. Sadati, “NN-RED: an AQM mechanism based on neural networks,” Electronics Letters, vol. 43, no. 19, pp. 1053–1055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. C. Cho, M. S. Fadali, and H. Lee, “Neural network control for TCP network congestion,” in Proceedings of American Control Conference (ACC '05), pp. 3480–3485, June 2005. View at Scopus
  29. H. Javam and M. Analoui, “SARED: stabilized ARED,” in Proceedings of the International Conference on Communication Technology (ICCT '06), pp. 1–4, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Chen, C. Hu, and Z. Ji, “An improved ARED algorithm for congestion control of network transmission,” Mathematical Problems in Engineering, vol. 2010, Article ID 329035, 14 pages, 2010. View at Publisher · View at Google Scholar
  31. J. Sun, K.-T. Ko, G. Chen, S. Chan, and M. Zukerman, “PD-RED: to improve the performance of RED,” IEEE Communications Letters, vol. 7, no. 8, pp. 406–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Wei and S. Y. Zhang, “Fuzzy self-tuning PD-RED algorithm,” Computer Engineering and Applications, vol. 43, no. 5, pp. 124–126, 2007. View at Google Scholar
  33. B. Zheng and M. Atiquzzaman, “A framework to determine bounds of maximum loss rate parameter of RED queue for next generation routers,” Journal of Network and Computer Applications, vol. 31, no. 4, pp. 429–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Zheng and M. Atiquzzaman, “A framework to determine the optimal weight parameter of RED in next-generation internet routers,” International Journal of Communication Systems, vol. 21, no. 9, pp. 987–1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Chen and S.-H. Yang, “The mechanism of adapting RED parameters to TCP traffic,” Computer Communications, vol. 32, no. 13-14, pp. 1525–1530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Tan, W. Zhang, G. Peng, and G. Chen, “Stability of TCP/RED systems in AQM routers,” IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1393–1398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Liu, Z.-H. Guan, and H. O. Wang, “Controlling bifurcations and chaos in TCP-UDP-RED,” Nonlinear Analysis: Real World Applications, vol. 11, no. 3, pp. 1491–1501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Woo and K. Kim, “Tight upper bound for stability of TCP/RED systems in AQM routers,” IEEE Communications Letters, vol. 14, no. 7, pp. 682–684, 2010. View at Publisher · View at Google Scholar
  39. S. Misra, B. J. Oommen, S. Yanamandra, and M. S. Obaidat, “Random early detection for congestion avoidance in wired networks: a discretized pursuit learning-automata-like solution,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 40, no. 1, pp. 66–76, 2010. View at Publisher · View at Google Scholar
  40. C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207–217, 2010. View at Publisher · View at Google Scholar
  41. C. Cattani and A. Kudreyko, “Harmonic wavelet method towards solution of the Fredholm type integral equations of the second kind,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4164–4171, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  42. S. Flyod, “Recommendation on using the “gentle” variant of RED,” 2000, http://www.icir.org/floyd/red/gentle.html.
  43. M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the TCP congestion avoidance algorithm,” Computer Communication Review, vol. 27, no. 3, pp. 67–82, 1997. View at Google Scholar
  44. C. Y.-F. Ho, B. W.-K. Ling, and H. H. C. Iu, “Symbolic dynamical model of average queue size of random early detection algorithm,” International Journal of Bifurcation and Chaos, vol. 20, no. 5, pp. 1415–1437, 2010. View at Publisher · View at Google Scholar
  45. R. J. La, P. Ranjan, and E. H. Abed, “Analysis of adaptive random early detection (Adaptive RED),” in Proceedings of the 18th International Teletraffic Congress (ITC'03), Berlin, Germany, 2003.
  46. C. Casetti and M. Meo, “New approach to model the stationary behavior of TCP connections,” in Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '00), pp. 367–375, March 2000. View at Scopus