Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2011, Article ID 921095, 11 pages
http://dx.doi.org/10.1155/2011/921095
Research Article

Rotordynamic Analysis for a Turbo-Machine with Fluid-Solid Interaction and Rotation Effects

1Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
2Dynamics and Control, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, China

Received 31 August 2010; Accepted 12 April 2011

Academic Editor: Victoria Vampa

Copyright © 2011 Rui Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Childs, “Fluid-structure interaction forces at pump-impeller-shroud surfaces for rotordynamic calculations,” Journal of Vibration and Acoustics, vol. 111, no. 7, pp. 216–225, 1989. View at Google Scholar · View at Scopus
  2. D. W. Childs, “Fluid-structure interaction forces at pump-impeller-shroud surfaces for axial vibration analysis,” Journal of Vibration and Acoustics, vol. 113, no. 1, pp. 108–115, 1991. View at Google Scholar
  3. W. D. Marscher, “Analysis and test of multistage pump ‘wet’ critical speeds,” Tribology Transactions, vol. 34, no. 3, pp. 445–457, 1991. View at Google Scholar · View at Scopus
  4. K. J. Bathe, H. Zhang, and M. H. Wang, “Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions,” Computers and Structures, vol. 56, no. 2-3, pp. 193–213, 1995. View at Google Scholar · View at Scopus
  5. K. J. Bathe, H. Zhang, and S. Ji, “Finite element analysis of fluid flows fully coupled with structural interactions,” Computers and Structures, vol. 72, no. 1–3, pp. 1–16, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. Bathe and H. Zhang, “Finite element developments for general fluid flows with structural interactions,” International Journal for Numerical Methods in Engineering, vol. 60, no. 1, pp. 213–232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Bermúdez, R. Durán, and R. Rodríguez, “Finite element analysis of compressible and incompressible fluid-solid systems,” Mathematics of Computation, vol. 67, no. 221, pp. 111–136, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. Y. W. Kwon and J. C. Jo, “3D modeling of fluid-structure interaction with external flow using coupled LBM and FEM,” Journal of Pressure Vessel Technology, vol. 130, no. 2, pp. 021301-1–021301-8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Czygan and O. von Estorff, “FEM/BEM coupling for fluid-structure interaction including nonlinear effects,” in Proceedings of the BEM 22 Conference, vol. 8, pp. 501–509, Cambridge, UK, 2000.
  10. O. Czygan and O. von Estorff, “Fluid-structure interaction by coupling BEM and nonlinear FEM,” Engineering Analysis with Boundary Elements, vol. 26, no. 9, pp. 773–779, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Soares Jr., O. von Estorff, and W. J. Mansur, “Iterative coupling of BEM and FEM for nonlinear dynamic analyses,” Computational Mechanics, vol. 34, no. 1, pp. 67–73, 2004. View at Google Scholar · View at Scopus
  12. D. Soares Jr., O. von Estorff, and W. J. Mansur, “Efficient non-linear solid-fluid interaction analysis by an iterative BEM/FEM coupling,” International Journal for Numerical Methods in Engineering, vol. 64, no. 11, pp. 1416–1431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Michelin and S. G. Llewellyn Smith, “An unsteady point vortex method for coupled fluid-solid problems,” Theoretical and Computational Fluid Dynamics, vol. 23, no. 2, pp. 127–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. ADINA R&D, Theory and Modeling Guide Volume III: ADINA CFD & FSI, 2006.
  15. D. Yu, J. Cheng, and Y. Yang, “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings,” Mechanical Systems and Signal Processing, vol. 19, no. 2, pp. 259–270, 2005. View at Publisher · View at Google Scholar · View at Scopus