Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 137672, 19 pages
Research Article

Study of Stability of Rotational Motion of Spacecraft with Canonical Variables

1Group of Orbital Dynamics and Planetology, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil
2Department of Mathematics, São Paulo Salesian University (UNISAL), Lorena 12600-100, SP, Brazil
3Space Mechanic and Control Division, National Institute for Space Research (INPE), São José dos Campos 12227-010, SP, Brazil
4Department of Aircraft Maintenance and Aeronautical Manufacturing, Faculty of Technology (FATEC), São José dos Campos 12247-004, SP, Brazil

Received 16 July 2011; Revised 10 October 2011; Accepted 23 October 2011

Academic Editor: Tadashi Yokoyama

Copyright © 2012 William Reis Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. S. Cabette, Estabilidade do movimento rotacional de satélites artificiais, Dissertation, National Institute for Space Research, São Paulo, Brazil, 2006.
  2. R. V. de Moraes, R. E. S. Cabette, M. C. Zanardi, T. J. Stuchi, and J. K. Formiga, “Attitude stability of artificial satellites subject to gravity gradient torque,” Celestial Mechanics & Dynamical Astronomy, vol. 104, no. 4, pp. 337–353, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. A. L. F. Machuy, Cálculo efetivo da forma normal parcial para o problema de Hill, Dissertação de mestrado-instituto de matemática, UFRJ—Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2001.
  4. J. K. Formiga, Formas normais no estudo da estabilidade para L4 no problema fotogravitacional, Dissertation, National Institute for Space Research, São José dos Campos, Brazil, 2009. View at Zentralblatt MATH
  5. G. Hori, “Theory of general perturbations for non-canonical system,” Astronomical Society of Japan, vol. 23, no. 4, pp. 567–587, 1971. View at Google Scholar
  6. A. M. Kovalov and A. Ia. Savchenko, “Stability of uniform rotations of a rigid body about a principal axis,” Prikladnaia Matematika i Mekhanika, vol. 39, no. 4, pp. 650–660, 1975. View at Google Scholar
  7. H. Kinoshita, “First order perturbation of the two finite body problem,” Publications of the Astronomical Society of Japan, vol. 24, pp. 423–439, 1972. View at Google Scholar
  8. C. D. Murray and S. F. Dermott, Solar system dynamics, Cambridge University Press, Cambridge, 1999.
  9. M. C. Zanardi, Movimento rotacional e translacional acoplado de satélites artificiais, Dissertação de mestrado, Instituto de Tecnologia Aeronáutica, São José dos Campos, São Paulo, Brazil, 1983.
  10. M. C. Zanardi, “Study of the terms of coupling between rotational and translational motions,” Celestial Mechanics, vol. 39, no. 2, pp. 147–158, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. T. J. Stuchi, “KAM tori in the center manifold of the 3-D Hill problem,” in Advanced in Space, O. C. Winter and A. F. B. Prado, Eds., vol. 2, pp. 112–127, INPE, São Paulo, Brazil, 2002. View at Google Scholar
  12. G. Hori, “Theory of general perturbations with unspecified canonical variables,” Publications of the Astronomical Society of Japan, vol. 18, pp. 287–299, 1966. View at Google Scholar
  13. S. Ferraz-Mello, Canonical Perturbation Theories-Degenerate Systems and Resonance, Springer, New York, NY, USA, 2007.
  14. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer, New York, NY, USA, 1983.
  15. V. I. Arnold, Equações Diferenciais Ordinárias, Mir, Moscow, Russia, 1985.
  16. V. I. Arnold, “Métodos matemáticos da mecânica clássica,” Editora Mir Moscou, p. 479, 1987. View at Google Scholar
  17. J. U. Crenshaw and P. M. Fitzpatrick, “Gravity effects on the rotational motion of a uniaxial artificial satellite,” AIAAJ, vol. 6, article 2140, 1968. View at Google Scholar
  18. H. K. Kuga, V. Orlando, and R. V. F. Lopes, “Flight dynamics operations during leap for the INPE’s second environmental data collecting satellite SCD 2,” Journal of the Brazilian Society of Mechanical Sciences, vol. 21, pp. 339–344, 1999. View at Google Scholar
  19. W. R. Silva, Estudo da estabilidade do movimento rotacional de satélites artificiais com variáveis canônicas, Qualificação de mestrado, UNESP—Universidade Estadual Paulista, São Paulo, Brazil, 2011.