Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 162825, 22 pages
http://dx.doi.org/10.1155/2012/162825
Research Article

Equivalent Mechanical Model for Lateral Liquid Sloshing in Partially Filled Tank Vehicles

College of Traffic, Jilin University, No. 5988 Renmin Street, Changchun 130022, China

Received 25 July 2012; Revised 17 September 2012; Accepted 10 October 2012

Academic Editor: Wuhong Wang

Copyright © 2012 Zheng Xue-lian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper reports a new approach to investigating sloshing forces and moments caused by liquid sloshing within partially filled tank vehicles subjected to lateral excitations. An equivalent mechanical model is used in the paper to approximately simulate liquid sloshing. The mechanical model is derived by calculating the trajectory of the center of gravity of the liquid bulk in tanks as the vehicle’s lateral acceleration changes from 0 to 1 g. Parametric expressions for the model are obtained by matching the dynamic effect of the mechanical model to that of liquid sloshing. And parameter values of a liquid sloshing dynamic effect, such as sloshing frequency and forces, are acquired using FLUENT to simulate liquid sloshing in tanks with different cross-sections and liquid fill percentages. The equivalent mechanical model for liquid sloshing in tank vehicles is of a great significance for simplifying the research on roll stability of tank vehicles and for developing active/passive roll control systems for these vehicles.