Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 312658, 11 pages
http://dx.doi.org/10.1155/2012/312658
Research Article

On Dummy Variables of Structure-Preserving Transformations

School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa

Received 27 December 2011; Accepted 17 March 2012

Academic Editor: Rosana Rodriguez-Lopez

Copyright © 2012 J. C. Ndogmo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tresse, “Sur les invariants différentiels des groupes continus de transformations,” Acta Mathematica, vol. 18, no. 1, pp. 1–3, 1894. View at Publisher · View at Google Scholar
  2. P. J. Olver and J. Pohjanpelto, “Maurer-Cartan forms and the structure of Lie pseudo-groups,” Selecta Mathematica. New Series, vol. 11, no. 1, pp. 99–126, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. O. I. Morozov, “Structure of symmetry groups via Cartan's method: survey of four approaches,” Symmetry, Integrability and Geometry. Methods and Applications, vol. 1, article 006, p. 14, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. S. Lie, Theorie der Transformationsgruppen I, II, III, Teubner, Leipzig, Germany, 1888.
  5. F. Schwarz, “Equivalence classes, symmetries and solutions of linear third-order differential equations,” Computing. Archives for Scientific Computing, vol. 69, no. 2, pp. 141–162, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. F. Schwarz, Algorithmic Lie Theory for Solving Ordinary Differential Equations, vol. 291, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2008.
  7. S. Lie, “Classification und integration von gewohnlichen differential-gleichugenc zwischen x; y; die gruppe von transformationen gestatten,” Arch. Math. Natur. Christiania, vol. 9, pp. 371–393, 1883. View at Google Scholar
  8. L. V. Ovsiannikov, Gruppovoi Analiz Differentsialnykh Uravnenii, Nauka, Moscow, Russia, 1978.
  9. M. Fels and P. J. Olver, “Moving coframes—II. Regularization and theoretical foundations,” Acta Applicandae Mathematicae, vol. 55, no. 2, pp. 127–208, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. N. Kh. Ibragimov, “Invariants of hyperbolic equations: a solution of the Laplace problem,” Rossiĭskaya Akademiya Nauk, vol. 45, no. 2, pp. 158–166, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. I. K. Johnpillai, F. M. Mahomed, and C. Wafo Soh, “Basis of joint invariants for 1 + 1 linear hyperbolic equations,” Journal of Nonlinear Mathematical Physics, vol. 9, no. suppl. 2, pp. 49–59, 2002. View at Publisher · View at Google Scholar
  12. L. V. Ovsiannikov, “Group properties of the Chaplygin equation,” Journal of Applied Mechanics and Technical Physics, vol. 3, pp. 126–145, 1960. View at Google Scholar
  13. O. I. Morozov, “The contact equivalence problem for linear hyperbolic equations,” Journal of Mathematical Sciences, no. 135, pp. 2680–2694, 2006. View at Google Scholar
  14. J. C. Ndogmo, “Invariants of differential equations defined by vector fields,” Journal of Physics A, vol. 41, no. 2, Article ID 025207, p. 14, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. E. H. Laguerre, “Sur les equations differentielles lineaires du troisieme ordre,” Comptes Rendus de l'Académie des Sciences, vol. 88x, pp. 116–118, 1879. View at Google Scholar
  16. F. Brioschi, “Sur les équations différentielles linéaires,” Bulletin de la Société Mathématique de France, vol. 7, pp. 105–108, 1879. View at Google Scholar
  17. R. Liouville, “Sur les invariants de certaines équations différentielles et sur leurs applications,” Journal de l'Ecole Polytechnique, vol. 59, pp. 7–76, 1889. View at Google Scholar