Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012 (2012), Article ID 349178, 20 pages
http://dx.doi.org/10.1155/2012/349178
Research Article

A Filter Algorithm with Inexact Line Search

1Department of Mathematics, Tongji University, Shanghai 200092, China
2Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
3School of Management, Fudan University, Shanghai 200433, China

Received 25 October 2011; Accepted 18 December 2011

Academic Editor: Dongdong Ge

Copyright © 2012 Meiling Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function,” Mathematical Programming, vol. 91, no. 2, pp. 239–269, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint, and A. Wächter, “Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 635–659, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. R. Fletcher, S. Leyffer, and P. L. Toint, “On the global convergence of a filter-SQP algorithm,” SIAM Journal on Optimization, vol. 13, no. 1, pp. 44–59, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. C. M. Chin and R. Fletcher, “On the global convergence of an SLP-filter algorithm that takes EQP steps,” Mathematical Programming, vol. 96, no. 1, Ser. A, pp. 161–177, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. A. A. Ribeiro, E. W. Karas, and C. C. Gonzaga, “Global convergence of filter methods for nonlinear programming,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1231–1249, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. S. Ulbrich, “On the superlinear local convergence of a filter-SQP method,” Mathematical Programming, vol. 100, no. 1, pp. 217–245, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. M. Ulbrich, S. Ulbrich, and L. N. Vicente, “A globally convergent primal-dual interior-point filter method for nonlinear programming,” Mathematical Programming, vol. 100, no. 2, pp. 379–410, 2003. View at Publisher · View at Google Scholar
  8. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming: motivation and global convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 1–31, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming: local convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 32–48, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. N. I. M. Gould, C. Sainvitu, and P. L. Toint, “A filter-trust-region method for unconstrained optimization,” SIAM Journal on Optimization, vol. 16, no. 2, pp. 341–357, 2006. View at Publisher · View at Google Scholar
  12. C. G. Shen, W. J. Xue, and D. G. Pu, “Global convergence of a tri-dimensional filter SQP algorithm based on the line search method,” Applied Numerical Mathematics, vol. 59, no. 2, pp. 235–250, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. K. Su and D. G. Pu, “A nonmonotone filter trust region method for nonlinear constrained optimization,” Journal of Computational and Applied Mathematics, vol. 223, no. 1, pp. 230–239, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. P. Y. Nie, “A filter method for solving nonlinear complementarity problems,” Applied Mathematics and Computation, vol. 167, no. 1, pp. 677–694, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer, New York, NY, USA, 1999. View at Publisher · View at Google Scholar
  16. D. G. Pu, S. H. Gui, and W. W. Tian, “A class of revised Broyden algorithms without exact line search,” Journal of Computational Mathematics, vol. 22, no. 1, pp. 11–20, 2004. View at Google Scholar · View at Zentralblatt MATH
  17. I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE: constrained and unconstrained testing environment,” ACM Transactions on Mathematical Software, vol. 21, no. 1, pp. 123–160, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: an SQP algorithm for large-scale constrained optimization,” SIAM Review, vol. 47, no. 1, pp. 99–131, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH