`Mathematical Problems in EngineeringVolume 2012, Article ID 349178, 20 pageshttp://dx.doi.org/10.1155/2012/349178`
Research Article

## A Filter Algorithm with Inexact Line Search

1Department of Mathematics, Tongji University, Shanghai 200092, China
2Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
3School of Management, Fudan University, Shanghai 200433, China

Received 25 October 2011; Accepted 18 December 2011

Copyright © 2012 Meiling Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function,” Mathematical Programming, vol. 91, no. 2, pp. 239–269, 2002.
2. R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint, and A. Wächter, “Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 635–659, 2002.
3. R. Fletcher, S. Leyffer, and P. L. Toint, “On the global convergence of a filter-SQP algorithm,” SIAM Journal on Optimization, vol. 13, no. 1, pp. 44–59, 2002.
4. C. M. Chin and R. Fletcher, “On the global convergence of an SLP-filter algorithm that takes EQP steps,” Mathematical Programming, vol. 96, no. 1, Ser. A, pp. 161–177, 2003.
5. A. A. Ribeiro, E. W. Karas, and C. C. Gonzaga, “Global convergence of filter methods for nonlinear programming,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1231–1249, 2008.
6. S. Ulbrich, “On the superlinear local convergence of a filter-SQP method,” Mathematical Programming, vol. 100, no. 1, pp. 217–245, 2004.
7. M. Ulbrich, S. Ulbrich, and L. N. Vicente, “A globally convergent primal-dual interior-point filter method for nonlinear programming,” Mathematical Programming, vol. 100, no. 2, pp. 379–410, 2003.
8. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.
9. A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming: motivation and global convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 1–31, 2005.
10. A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming: local convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 32–48, 2005.
11. N. I. M. Gould, C. Sainvitu, and P. L. Toint, “A filter-trust-region method for unconstrained optimization,” SIAM Journal on Optimization, vol. 16, no. 2, pp. 341–357, 2006.
12. C. G. Shen, W. J. Xue, and D. G. Pu, “Global convergence of a tri-dimensional filter SQP algorithm based on the line search method,” Applied Numerical Mathematics, vol. 59, no. 2, pp. 235–250, 2009.
13. K. Su and D. G. Pu, “A nonmonotone filter trust region method for nonlinear constrained optimization,” Journal of Computational and Applied Mathematics, vol. 223, no. 1, pp. 230–239, 2009.
14. P. Y. Nie, “A filter method for solving nonlinear complementarity problems,” Applied Mathematics and Computation, vol. 167, no. 1, pp. 677–694, 2005.
15. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer, New York, NY, USA, 1999.
16. D. G. Pu, S. H. Gui, and W. W. Tian, “A class of revised Broyden algorithms without exact line search,” Journal of Computational Mathematics, vol. 22, no. 1, pp. 11–20, 2004.
17. I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, “CUTE: constrained and unconstrained testing environment,” ACM Transactions on Mathematical Software, vol. 21, no. 1, pp. 123–160, 1995.
18. P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: an SQP algorithm for large-scale constrained optimization,” SIAM Review, vol. 47, no. 1, pp. 99–131, 2005.