Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2012, Article ID 351759, 22 pages
http://dx.doi.org/10.1155/2012/351759
Research Article

Application of Periapse Maps for the Design of Trajectories Near the Smaller Primary in Multi-Body Regimes

School of Aeronautics and Astronautics, Purdue University, Armstrong Hall, West Lafayette, IN 47907, USA

Received 15 July 2011; Accepted 4 September 2011

Academic Editor: Antonio F. Bertachini A. Prado

Copyright © 2012 Kathleen C. Howell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Howell, B. T. Barden, and M. W. Lo, “Application of dynamical systems theory to trajectory design for a libration point mission,” Journal of the Astronautical Sciences, vol. 45, no. 2, pp. 161–178, 1997. View at Google Scholar
  2. M. W. Lo, B. G. Williams, W. E. Bollman et al., “Genesis mission design,” Journal of the Astronautical Sciences, vol. 49, no. 1, pp. 169–184, 2001. View at Google Scholar · View at Scopus
  3. V. Angelopoulos, “The THEMIS mission,” Space Science Reviews, vol. 141, no. 1–4, pp. 5–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Angelopoulos, “The ARTEMIS mission,” Space Science Reviews. In press. View at Publisher · View at Google Scholar
  5. M. Woodard, D. Folta, and D. Woodfork, “ARTEMIS: the first mission to the lunar libration points,” in Proceedings of the 21st International Symposium on Space Flight Dynamics, Toulouse, France, September-October 2009.
  6. M. Hénon, “Exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability,” Astronomy and Astrophysics, vol. 1, pp. 223–238, 1969. View at Google Scholar
  7. M. Hénon, “Exploration of the restricted problem. VI. Hill’s case: non-periodic orbits,” Astronomy and Astrophysics, vol. 9, pp. 24–36, 1970. View at Google Scholar
  8. D. P. Hamilton and J. A. Burns, “Orbital stability zones about asteroids,” Icarus, vol. 92, no. 1, pp. 118–131, 1991. View at Google Scholar
  9. H. Yamakawa, J. Kawaguchi, N. Ishil, and H. Matsuo, “On earth-moon transfer trajectory with gravitational capture,” in Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Victoria, Canada, August 1993, Paper No. AAS 93-633.
  10. E. A. Belbruno and J. K. Miller, “Sun-perturbed earth-to-moon transfers with ballistic capture,” Journal of Guidance, Control, and Dynamics, vol. 16, no. 4, pp. 770–775, 1993. View at Google Scholar
  11. W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics,” Chaos, vol. 10, no. 2, pp. 427–469, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Zentralblatt MATH
  12. W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Low energy transfer to the moon,” Celestial Mechanics and Dynamical Astronomy, vol. 81, no. 1-2, pp. 63–73, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, and S. D. Ross, “Invariant manifolds, the spatial three-body problem and space mission design,” in Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Quebec, Canada, August 2001, Paper No. AAS 2001-301.
  14. K. C. Howell, B. G. Marchand, and M. W. Lo, “Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems,” American Astronautical Society. Journal of the Astronautical Sciences, vol. 49, no. 4, pp. 539–557, 2001. View at Google Scholar
  15. A. F. Prado, “Third-body perturbation in orbits around natural satellites,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 1, pp. 33–40, 2003. View at Google Scholar
  16. F. Topputo, M. Vasile, and A. E. Finzi, “Combining two and three-body dynamics for low energy transfer trajectories of practical interest,” in Proceedings of the 55th International Astronautical Congress, pp. 584–596, Vancouver, Canada, October 2004, IAC-04-A.7.02.
  17. G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, and S. D. Ross, “Connecting orbits and invariant manifolds in the spatial restricted three-body problem,” Nonlinearity, vol. 17, no. 5, pp. 1571–1606, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. F. Topputo, M. Vasile, and F. Bernelli-Zazzera, “Low energy interplanetary transfers exploiting invariant manifolds of the restricted three-body problem,” Journal of the Astronautical Sciences, vol. 53, no. 4, pp. 353–372, 2005. View at Google Scholar
  19. R. L. Anderson and M. W. Lo, “Virtual exploration by computing global families of trajectories with supercomputers,” in Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Copper Mountain, Colo, USA, January 2005, Paper No. AAS 05-220.
  20. R. P. Russell, “Global search for planar and three-dimensional periodic orbits near Europa,” Journal of the Astronautical Sciences, vol. 54, no. 2, pp. 199–226, 2006. View at Google Scholar
  21. C. F. de Melo and O. C. Winter, “Alternative paths to Earth-moon transfer,” Mathematical Problems in Engineering, vol. 2006, Article ID 34317, 20 pages, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. F. García and G. Gómez, “A note on weak stability boundaries,” Celestial Mechanics and Dynamical Astronomy, vol. 97, no. 2, pp. 87–100, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. J. S. Parker and G. H. Born, “Direct lunar halo orbit transfers,” in Proceedings of the 17th AAS/AIAA Space Flight Mechanics Conference, Sedona, Ariz, USA, 2007, Paper AAS 07-229.
  24. J. S. Parker and G. H. Born, “Modeling a low-energy ballistic lunar transfer using dynamical systems theory,” Journal of Spacecraft and Rockets, vol. 45, no. 6, pp. 1269–1281, 2008. View at Publisher · View at Google Scholar
  25. G. A. Tsirogiannis, E. A. Perdios, and V. V. Markellos, “Improved grid search method: an efficient tool for global computation of periodic orbits,” Celestial Mechanics and Dynamical Astronomy, vol. 103, no. 1, pp. 49–78, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. E. Belbruno, M. Gidea, and F. Topputo, “Weak stability boundary and invariant manifolds,” SIAM Journal on Applied Dynamical Systems, vol. 9, no. 3, pp. 1061–1089, 2010. View at Publisher · View at Google Scholar
  27. R. L. Anderson and M. W. Lo, “A dynamical systems analysis of resonant flybys: ballistic case,” The Journal of the Astronautical Sciences, vol. 58, no. 2, 2011. View at Google Scholar
  28. B. F. Villac and D. J. Scheeres, “Escaping trajectories in the Hill three-body problem and applications,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 224–232, 2003. View at Google Scholar
  29. M. E. Paskowitz and D. J. Scheeres, “Robust capture and transfer trajectories for planetary satellite orbiters,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 2, pp. 342–353, 2006. View at Publisher · View at Google Scholar
  30. M. E. Paskowitz and D. J. Scheeres, “Design of science orbits about planetary satellites: Application to Europa,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 5, pp. 1147–1158, 2006. View at Publisher · View at Google Scholar
  31. D. C. Davis and K. Howell, “Long term evolution of trajectories near the smaller primary in the restricted problem,” in Proceedings of the 20th AAS/AIAA Space Flight Mechanics Meeting, San Diego, Calif, USA, February 2010.
  32. D. C. Davis and K. Howell, “Trajectory evolution in the multi-body problem with applications in the saturnian system,” in Proceedings of the 61st International Astronautical Congress, Prague, Czech Republic, September 2010.
  33. A. F. Haapala and K. C. Howell, “Trajectory design using Poincaré maps and invariant manifolds,” in Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting, New Orleans, La, USA, February 2011.
  34. B. F. Villac and D. J. Scheeres, “On the concept of periapsis in Hill's problem,” Celestial Mechanics and Dynamical Astronomy, vol. 90, no. 1-2, pp. 165–178, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  35. D. C. Davis, Multi-body trajectory design strategies based on periapsis Poincaré maps, Ph.D. dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Ind, USA, 2011.
  36. A. F. Haapala, Trajectory design using periapsis Poincaré maps and invariant manifolds, M.S. thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Ind, USA, 2011.
  37. E. Perozzi and A. Di Salvo, “Novel spaceways for reaching the Moon: an assessment for exploration,” Celestial Mechanics and Dynamical Astronomy, vol. 102, no. 1–3, pp. 207–218, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  38. J. Parker and G. Born, “Targeting low-energy ballistic lunar transfers,” in Proceedings of the AAS George H. Born Symposium, Boulder, Colo, USA, May 2010, Paper No. AAS 10-1859.
  39. T. H. Sweetser, “An estimate of the global minimum ΔV needed for earth-moon transfer,” in Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Houston, Tex, USA, February 1991, Paper No. AAS 91-101.