Abstract

In the paper we presented new results in incremental network modelling of two-wire lines in frequency range [0,3] [GHz], by the uniform RLCG ladders with frequency dependent RL parameters, which are analyzed by using PSPICE. Some important frequency limitations of the proposed approach have been pinpointed, restricting the application of developed models to steady-state analysis of RLCG networks transmitting the limited-frequency-band signals. The basic intention of this approach is to circumvent solving of telegraph equations or application of other complex, numerically demanding procedures in determining line steady-state responses at selected equidistant points. The key to the modelling method applied is partition of the two-wire line in segments with defined maximum length, whereby a couple of new polynomial approximations of line transcendental functions is introduced. It is proved that the strict equivalency between the short-line segments and their uniform ladder counterparts does not exist, but if some conditions are met, satisfactory approximations could be produced. This is illustrated by several examples of short and moderately long two-wire lines with different terminations, proving the good agreement between the exactly obtained steady-state results and those obtained by PSPICE simulation.

1. Introduction

A comprehensive theory of linear, time-invariant, lumped-parameter networks is presented in many references, where the physical dimensions of network elements are assumed small, compared to the wavelength associated with the highest frequency in the spectrum of the signal being processed. In those networks, two-terminal passive elements, such as resistors, capacitors, and inductors, are specified by single, spatially independent parameters. In passive electrical networks there may be also four-terminal elements, such as transformers and gyrators. The equilibrium equations of linear, time-invariant, lumped-parameter networks are ordinary, linear differential equations with constant coefficients. Unfortunately, all physical components cannot be treated as lumped, since their spatial configuration plays important role in understanding their physical behaviour at high frequencies. The systems such as electrical transmission lines, passive integrated circuits, as well as many physical processes: thermal conduction in rods, carrier motion in transistors, vibration of strings, and so forth, are characterized by partial differential equations, and distributed parameters must be introduced for correct mathematical description of their physical behaviour. Equilibrium equations of those distributed-parameter systems (i.e., partial differential equations) have solutions which are more difficult to find than the solutions of ordinary differential equations with constant coefficients. Since differential equations of transmission lines are analogous to those of many other systems and one-dimensional physical processes (e.g., of the heat flow in solids), in this paper we will: (a) make brief overview of partial differential equations describing voltage and current distributions in finite length lines, (b) develop the appropriate physical model of two-wire line with frequency dependent per-unit-length parameters by taking into account all the physically relevant parameters (geometry, dielectric, magnetic, and conductivity properties of media, the operating frequency range, and skin-effect), and (c) propose an approximate representation of real two-wire lines by uniform RLC ladders with frequency-dependent parameters, turning thuswith the problem of analysis of real two-wire lines into the analysis problem of high-order passive RLC networks by extensive use of PSPICE.

2. The Incremental Network Model of Two-Wire Line

In engineering practice the most widely and frequently used types of transmission lines are: (a) two-wire line (Figure 1(a)), coaxial line (Figure 1(b)) and twisted pair (Figure 1(c)). In Figure 1 with πœ€π‘, πœ‡π‘ and πœŽπ‘ or πœ€π‘‘, πœ‡π‘‘, and πœŽπ‘‘ are denoted: the electric permittivity, the magnetic permeability, and the specific electric conductivity of conductor (β€œπ‘β€) or dielectric (β€œπ‘‘β€), respectively. Nevertheless, no matter what type of transmission line is considered, each line segment (section) with physical length 𝛿π‘₯, which is sufficiently small compared to the wavelength associated with highest frequency in the spectrum of the signal being transmitted, can be represented with approximate, incremental, lumped network model depicted in Figure 2. Thereon are denoted with π‘…ξ…ž[Ξ©/m],β€‰β€‰πΏξ…ž[H/m], β€‰πΆξ…ž[F/m],  andβ€‰πΊξ…ž[S/m]: the resistance, inductance, capacitance, and conductance, respectively, of transmission line, in per-unit-length form. The lumped network model in Figure 2 becomes more and more accurate as  𝛿π‘₯β†’0,  and it is proved to be an adequate representation of any transmission line, since it is in good agreement with the experimental observations. Throughout the paper the length of the line will be denoted by  ℓ  and the considered frequency range will be π‘“βˆˆ[0,3][GHz]. Dielectrics are assumed isotropic, linear, and homogeneous and, if imperfect, linear in ohmic sense, with constant specific electric conductivity πœŽπ‘‘β‰ͺπœŽπ‘.

By neglecting the proximity effect with assumption 𝑑≫2π‘Ž, edge effect and taking πœŽπ‘‘β‰ͺπœŽπ‘, the per-unit-length capacitance πΆξ…ž and the per-unit-length dielectric conductance πΊξ…ž of two-wire line in Figure 1(a) are calculated according to the following relations [1]: πΆξ…ž=πœ‹β‹…πœ€π‘‘ln(𝑑/π‘Ž),πΊξ…ž=πœŽπ‘‘πœ€π‘‘β‹…πΆξ…ž=πœ‹β‹…πœŽπ‘‘,ξ€·ln(𝑑/π‘Ž)𝑑≫2π‘Žβˆ§πœŽπ‘‘β‰ͺπœŽπ‘ξ€Έ.(2.1)

It has been proved [2, 3] that due to the influence of the skin-effect each conductor of the two-wire line should be characterized by the frequency-dependent per-unit-length resistance π‘…ξ…žπ‘–(𝑓) and the frequency-dependent per-unit-length inner inductance πΏξ…žπ‘–(𝑓)-for π‘“βˆˆ[0,∞)[Hz], π‘…ξ…žπ‘–π‘˜(𝑓)=2πœ‹β‹…π‘Žβ‹…πœŽπ‘ξ‚Έβ‹…Reβˆ’bei(π‘˜β‹…π‘Ž)+𝑗⋅ber(π‘˜β‹…π‘Ž)berξ…ž(π‘˜β‹…π‘Ž)+𝑗⋅beiξ…žξ‚Ή=π‘˜(π‘˜β‹…π‘Ž)2πœ‹β‹…π‘Žβ‹…πœŽπ‘β‹…ber(π‘˜β‹…π‘Ž)β‹…beiξ…ž(π‘˜β‹…π‘Ž)βˆ’bei(π‘˜β‹…π‘Ž)β‹…berξ…ž(π‘˜β‹…π‘Ž)ξ€Ίberξ…žξ€»(π‘˜β‹…π‘Ž)2+ξ€Ίbeiξ…žξ€»(π‘˜β‹…π‘Ž)2,πΏξ…žπ‘–π‘˜(𝑓)=2πœ‹β‹…π‘Žβ‹…πœŽπ‘ξ‚Έβ‹…πœ”β‹…Imβˆ’bei(π‘˜β‹…π‘Ž)+𝑗⋅ber(π‘˜β‹…π‘Ž)berξ…ž(π‘˜β‹…π‘Ž)+𝑗⋅beiξ…žξ‚Ή=π‘˜(π‘˜β‹…π‘Ž)2πœ‹β‹…π‘Žβ‹…πœŽπ‘β‹…β‹…πœ”ber(π‘˜β‹…π‘Ž)β‹…berξ…ž(π‘˜β‹…π‘Ž)+bei(π‘˜β‹…π‘Ž)β‹…beiξ…ž(π‘˜β‹…π‘Ž)ξ€Ίberξ…žξ€»(π‘˜β‹…π‘Ž)2+ξ€Ίbeiξ…žξ€»(π‘˜β‹…π‘Ž)2,(2.2) where: βˆšπ‘—=βˆ’1,β€‰β€‰πœ”=2πœ‹β‹…π‘“,β€‰β€‰βˆšπ‘˜=πœ”β‹…πœ‡π‘β‹…πœŽπ‘β€‰, and β€œBessel real” ber(π‘˜β‹…π‘Ž) and β€œBessel imaginary” bei(π‘˜β‹…π‘Ž) are the Bessel-Kelvin functions with the first-order derivatives berξ…ž(π‘˜β‹…π‘Ž) and beiξ…ž(π‘˜β‹…π‘Ž), respectively, at the point 𝑧=π‘˜β‹…π‘Ž, which can be approximated at high frequencies (i.e., for π‘˜β‹…π‘Žβ‰«1) with [4], ber(π‘˜β‹…π‘Ž)=𝐺⋅cosπ‘˜β‹…π‘Žβˆš2βˆ’πœ‹8ξƒͺ,bei(π‘˜β‹…π‘Ž)=𝐺⋅sinπ‘˜β‹…π‘Žβˆš2βˆ’πœ‹8ξƒͺ,1𝐺=√2πœ‹β‹…π‘˜β‹…π‘Žβ‹…π‘’βˆš(π‘˜β‹…π‘Ž)/2,berξ…žξƒ©(π‘˜β‹…π‘Ž)=𝐺⋅cosπ‘˜β‹…π‘Žβˆš2+πœ‹8ξƒͺ,beiξ…žξƒ©(π‘˜β‹…π‘Ž)=𝐺⋅sinπ‘˜β‹…π‘Žβˆš2+πœ‹8ξƒͺ.(2.3)

From (2.3) it should be firstly noticed that at high frequencies (i.e., for π‘˜β‹…π‘Žβ‰«1) it holds βˆ’bei(π‘˜β‹…π‘Ž)+𝑗⋅ber(π‘˜β‹…π‘Ž)berξ…ž(π‘˜β‹…π‘Ž)+𝑗⋅beiξ…ž=ξ‚€βˆš(π‘˜β‹…π‘Ž)βˆ’sin(π‘˜β‹…π‘Ž)/ξ‚ξ‚€βˆš2βˆ’πœ‹/8+𝑗⋅cos(π‘˜β‹…π‘Ž)/2βˆ’πœ‹/8ξ‚€βˆšcos(π‘˜β‹…π‘Ž)/ξ‚ξ‚€βˆš2+πœ‹/8+𝑗⋅sin(π‘˜β‹…π‘Ž)/𝑒2+πœ‹/8=π‘—β‹…βˆšπ‘—β‹…((π‘˜β‹…π‘Ž)/2βˆ’πœ‹/8)π‘’βˆšπ‘—β‹…((π‘˜β‹…π‘Ž)/2+πœ‹/8)=𝑒𝑗⋅(πœ‹/4),(2.4) and then from (2.2) it may be obtained consecutively for π‘˜β‹…π‘Žβ‰«1, π‘…ξ…žπ‘–(π‘˜π‘“)=√2πœ‹β‹…2β‹…π‘Žβ‹…πœŽπ‘=1β‹…ξƒŽ2πœ‹β‹…π‘Žπœ‹β‹…π‘“β‹…πœ‡π‘πœŽπ‘,πΏξ…žπ‘–π‘˜(𝑓)=√2πœ‹β‹…2β‹…πœ”β‹…π‘Žβ‹…πœŽπ‘=1β‹…ξ‚™4πœ‹β‹…π‘Žπœ‡π‘πœ‹β‹…π‘“β‹…πœŽπ‘.(2.5)

The overall per-unit-length resistance π‘…ξ…ž(𝑓) and the inductance πΏξ…ž(𝑓) of two-wire line are π‘…ξ…ž(𝑓)=2β‹…π‘…ξ…žπ‘–(||𝑓)βˆ€π‘“,π‘…ξ…ž(1𝑓)=β‹…ξƒŽπœ‹β‹…π‘Žπœ‹β‹…π‘“β‹…πœ‡π‘πœŽπ‘=𝑅𝑠(𝑓)||||πœ‹β‹…π‘Žπ‘˜β‹…π‘Žβ‰«1,𝑅𝑠(ξƒŽπ‘“)=πœ‹β‹…π‘“β‹…πœ‡π‘πœŽπ‘,πΏξ…ž(𝑓)=πΏξ…žπ‘’+2β‹…πΏξ…žπ‘–||(𝑓)βˆ€π‘“πœ‡,𝐿′(𝑓)=π‘‘πœ‹ξ‚€π‘‘β‹…lnπ‘Žξ‚+1β‹…ξ‚™2πœ‹β‹…π‘Žπœ‡π‘πœ‹β‹…π‘“β‹…πœŽπ‘||||π‘˜β‹…π‘Žβ‰«1(𝑑≫2π‘Ž),(2.6) where 𝑅𝑠(𝑓) is the surface resistance of line conductors and πΏξ…žπ‘’=(πœ‡π‘‘/πœ‹)β‹…ln(𝑑/π‘Ž) is the external per-unit-length inductance of two-wire line. Throught the paper it will be assumed that πœ‡π‘β‰ˆπœ‡π‘‘β‰ˆπœ‡0.

Since the following expansions hold for any frequency π‘“βˆˆ[0,∞) [Hz] (i.e., for any π‘˜β‹…π‘Ž) [4], ber(π‘˜β‹…π‘Ž)=βˆžξ“π‘›=0(βˆ’1)𝑛⋅(π‘˜β‹…π‘Ž/2)4𝑛(2𝑛!)2=1βˆ’(π‘˜β‹…π‘Ž)422β‹…42+(π‘˜β‹…π‘Ž)822β‹…42β‹…62β‹…82βˆ’(π‘˜β‹…π‘Ž)1222β‹…42β‹…62β‹…82β‹…102β‹…122±…,bei(π‘˜β‹…π‘Ž)=βˆžξ“π‘›=1(βˆ’1)𝑛+1β‹…(π‘˜β‹…π‘Ž/2)4π‘›βˆ’2[](2π‘›βˆ’1)!2=(π‘˜β‹…π‘Ž)222βˆ’(π‘˜β‹…π‘Ž)622β‹…42β‹…62+(π‘˜β‹…π‘Ž)1022β‹…42β‹…62β‹…82β‹…102βˆ“β€¦,berξ…ž(π‘˜β‹…π‘Ž)=βˆ’(π‘˜β‹…π‘Ž)322+β‹…4(π‘˜β‹…π‘Ž)722β‹…42β‹…62βˆ’β‹…8(π‘˜β‹…π‘Ž)1122β‹…42β‹…62β‹…82β‹…102+β‹…12(π‘˜β‹…π‘Ž)1522β‹…42β‹…62β‹…82β‹…102β‹…122β‹…142β‹…16βˆ“β€¦,beiξ…ž(π‘˜β‹…π‘Ž)=π‘˜β‹…π‘Ž2βˆ’(π‘˜β‹…π‘Ž)522β‹…42+β‹…6(π‘˜β‹…π‘Ž)922β‹…42β‹…62β‹…82βˆ’(β‹…10π‘˜β‹…π‘Ž)1322β‹…42β‹…62β‹…82β‹…102β‹…122β‹…14±…,(2.7) then by using (2.2) and (2.7) when 𝑓→0 [Hz], the following consequences are easily obtained: π‘…ξ…žπ‘–(𝑓)β†’1/(πœŽπ‘β‹…πœ‹β‹…π‘Ž2), πΏξ…žπ‘–(𝑓)β†’πœ‡π‘/(8β‹…πœ‹), π‘…ξ…ž(𝑓)β†’2/(πœŽπ‘β‹…πœ‹β‹…π‘Ž2), πΏξ…ž(𝑓)β†’(πœ‡π‘‘/πœ‹)β‹…ln(𝑑/π‘Ž)+πœ‡π‘/(4β‹…πœ‹). Automatic, fast, and accurate numerical calculation of Bessel-Kelvin functions (2.7) imposes a real need to distinguish between the following two cases of approximation, depending on magnitude of 𝑧=π‘˜β‹…π‘Žβˆˆ[0,∞) [5],

Case  Aβ€‰β€‰βˆš(𝑧=𝑧(𝑓)=π‘Žβ‹…π‘˜=π‘Žβ‹…2β‹…πœ‹β‹…π‘“β‹…πœ‡π‘β‹…πœŽπ‘βˆˆ[0,8]). 𝑧ber(𝑧)=1βˆ’64β‹…84𝑧+113.77777774β‹…88ξ‚€π‘§βˆ’32.36345652β‹…812𝑧+2.64191397β‹…816ξ‚€π‘§βˆ’0.08349609β‹…820𝑧+0.00122552β‹…824ξ‚€π‘§βˆ’0.00000901β‹…828+πœ€1ξ€·||πœ€1||<10βˆ’9ξ€Έ,𝑧bei(𝑧)=16β‹…82ξ‚€π‘§βˆ’113.77777774β‹…86𝑧+72.81777742β‹…810ξ‚€π‘§βˆ’10.56765779β‹…814𝑧+0.52185615β‹…818ξ‚€π‘§βˆ’0.01103667β‹…822𝑧+0.00011346β‹…826+πœ€2ξ€·||πœ€2||<6β‹…10βˆ’9ξ€Έ,berξ…žξ‚Έξ‚€π‘§(𝑧)=π‘§β‹…βˆ’4β‹…82𝑧+14.22222222β‹…86ξ‚€π‘§βˆ’6.06814810β‹…810𝑧+0.66047849β‹…814ξ‚€π‘§βˆ’0.02609253β‹…818𝑧+0.00045957β‹…822ξ‚€π‘§βˆ’0.00000394β‹…826ξ‚Ή+πœ€3ξ€·||πœ€3||<2.1β‹…10βˆ’8ξ€Έ,beiξ…žξ‚Έ1(𝑧)=𝑧⋅2ξ‚€π‘§βˆ’10.66666666β‹…84𝑧+11.37777772β‹…88ξ‚€π‘§βˆ’2.31167514β‹…812𝑧+0.14677204β‹…816ξ‚€π‘§βˆ’0.00379386β‹…820𝑧+0.00004609β‹…824ξ‚Ή+πœ€4ξ€·||πœ€4||<7β‹…10βˆ’8ξ€Έ.(2.8)

Case  B (βˆšπ‘§=𝑧(𝑓)=π‘Žβ‹…π‘˜=π‘Žβ‹…2β‹…πœ‹β‹…π‘“β‹…πœ‡π‘β‹…πœŽπ‘βˆˆ(8,∞)).

Define firstly the following set of auxiliary functions: ξ‚€8𝛼(𝑧)=βˆ’0.3926991⋅𝑗+(0.0110486βˆ’0.0110485⋅𝑗)⋅𝑧8βˆ’0.0009765⋅𝑗⋅𝑧2ξ‚€8+(βˆ’0.0000906βˆ’0.0000901⋅𝑗)⋅𝑧3ξ‚€8βˆ’0.0000252⋅𝑧4+ξ‚€8(βˆ’0.0000034+0.0000051⋅𝑗)⋅𝑧5+ξ‚€8(0.0000006+0.0000019⋅𝑗)⋅𝑧6,ξ‚€8𝛼(βˆ’π‘§)=βˆ’0.3926991⋅𝑗+(βˆ’0.0110486+0.0110485⋅𝑗)⋅𝑧8βˆ’0.0009765⋅𝑗⋅𝑧2ξ‚€8+(0.0000906+0.0000901⋅𝑗)⋅𝑧3ξ‚€8βˆ’0.0000252⋅𝑧4ξ‚€8+(0.0000034βˆ’0.0000051⋅𝑗)⋅𝑧5ξ‚€8+(0.0000006+0.0000019⋅𝑗)⋅𝑧6,𝛽8(𝑧)=(0.7071068+0.7071068⋅𝑗)+(βˆ’0.0625001βˆ’0.0000001⋅𝑗)⋅𝑧8+(βˆ’0.0013813+0.0013811⋅𝑗)⋅𝑧2ξ‚€8+(0.0000005+0.0002452⋅𝑗)⋅𝑧3ξ‚€8+(0.0000346+0.0000338⋅𝑗)⋅𝑧4ξ‚€8+(0.0000017βˆ’0.0000024⋅𝑗)⋅𝑧5ξ‚€8+(0.0000016βˆ’0.0000032⋅𝑗)⋅𝑧6,ξ‚€8𝛽(βˆ’π‘§)=(0.7071068+0.7071068⋅𝑗)+(0.0625001+0.0000001⋅𝑗)⋅𝑧8+(βˆ’0.0013813+0.0013811⋅𝑗)⋅𝑧2ξ‚€8+(βˆ’0.0000005βˆ’0.0002452⋅𝑗)⋅𝑧3ξ‚€8+(0.0000346+0.0000338⋅𝑗)⋅𝑧4ξ‚€8+(βˆ’0.0000017+0.0000024⋅𝑗)⋅𝑧5+ξ‚€8(0.0000016βˆ’0.0000032⋅𝑗)⋅𝑧6.(2.9) and, also, define another set of auxiliary functions: 𝑓(𝑧)=πœ‹ξƒ¬βˆ’2⋅𝑧⋅exp1+π‘—βˆš2ξƒ­1⋅𝑧+𝛼(βˆ’π‘§),𝑔(𝑧)=βˆšξƒ¬2β‹…πœ‹β‹…π‘§β‹…exp1+π‘—βˆš2⋅𝑧+𝛼(𝑧),(2.10) then, the values of Bessel-Kelvin functions can be efficiently calculated [5] by using the relations: 𝑗ber(𝑧)=Reπœ‹ξ‚Ήξ‚Έπ‘—β‹…π‘“(𝑧)+𝑔(𝑧),bei(𝑧)=Imπœ‹ξ‚Ή,⋅𝑓(𝑧)+𝑔(𝑧)berξ…žξ‚Έβˆ’π‘—(𝑧)=Reπœ‹ξ‚Ήβ‹…π‘“(𝑧)⋅𝛽(βˆ’π‘§)+𝑔(𝑧)⋅𝛽(𝑧),beiξ…žξ‚Έβˆ’π‘—(𝑧)=Imπœ‹ξ‚Ή.⋅𝑓(𝑧)⋅𝛽(βˆ’π‘§)+𝑔(𝑧)⋅𝛽(𝑧)(2.11)

For the coaxial line with length β„“ (Figure 1(b)), the per-unit-length capacitance πΆξ…ž and the per-unit-length conductance πΊξ…ž of dielectric are calculated according to the following relations [1]: πΆξ…ž=2πœ‹β‹…πœ€π‘‘ln(𝑏/π‘Ž),πΊξ…ž=πœŽπ‘‘πœ€π‘‘β‹…πΆξ…ž=2πœ‹β‹…πœŽπ‘‘,ξ€·πœŽln(𝑏/π‘Ž)𝑑β‰ͺπœŽπ‘ξ€Έ.(2.12)

It has been shown [1–3] that at high frequencies the coaxial line is characterized by the per-unit-length resistance π‘…ξ…ž(𝑓) and the per-unit-length inductance πΏξ…ž(𝑓) given with, π‘…ξ…ž(𝑅𝑓)=𝑠(𝑓)β‹…ξ‚€12πœ‹π‘Ž+1𝑏=1β‹…ξƒŽ2πœ‹πœ‹β‹…π‘“β‹…πœ‡π‘πœŽπ‘β‹…ξ‚€1π‘Ž+1𝑏,πΏξ…žβ‰ˆπΏξ…žπ‘’=πœ‡π‘‘ξ‚€π‘2πœ‹β‹…lnπ‘Žξ‚,ξ€·πœ‡π‘β‰ˆπœ‡π‘‘β‰ˆπœ‡0ξ€Έ.(2.13)

The twisted-pair (Figure 1(c)) has characteristics similar to those of the two-wire line, except for the smaller inductivity and the smaller modulus 𝑍0 of its characteristic impedance 𝑍0 [3, 6].

To resume our investigation, consider two-wire line with copper conductors and polyethylene dielectric, where π‘Ž=0.1[mm] and 𝑑=4[mm] (Figure 1(a)). Let the operating frequency range of this line be π‘“βˆˆ[0,3]  [GHz]. The specific electric conductivity of copper is πœŽπ‘β‰ˆ5.81β‹…107  [S/m] and magnetic permeability is πœ‡π‘β‰ˆπœ‡0. At the temperature 𝑇=298 [K] the relative permittivity of polyethylene is πœ€π‘Ÿβ‰ˆ2.26 (for frequencies up to 25 [GHz]) and its specific electric conductivity is πœŽπ‘‘β‰ˆ10βˆ’15 [S/m]. From (2.1) it is calculated πΆξ…ž=17.04 [pF/m] and πΊξ…ž=0.85 [fS/m]. At frequency 𝑓=0 [Hz] the per-unit-length resistance of this line is π‘…ξ…ž(0)=2/(πœŽπ‘β‹…πœ‹β‹…π‘Ž2)=1.0957 [Ξ©/m] and its per-unit-length inductance is πΏξ…ž(0)=(πœ‡π‘‘/πœ‹)β‹…ln(𝑑/π‘Ž)+πœ‡π‘/(4β‹…πœ‹)β‰ˆ1.575 [ΞΌH/m]. At frequency 𝑓=1 [GHz] it is calculated from (2.2) and (2.9)–(2.11): π‘…ξ…ž(𝑓)=26.514 [Ξ©/m] ≫ π‘…ξ…ž(0) and πΏξ…ž(𝑓)β‰ˆ1.479 [ΞΌH/m], and for the current wavelength it is obtained πœ†β‰ˆπ‘0/[𝑓⋅(πœ€π‘Ÿ)1/2]β‰ˆ20 [cm]. In Figures 3, 4, 5, and 6 the variations of π‘…ξ…ž(𝑓),πΏξ…ž(𝑓),π‘‘π‘…ξ…ž(𝑓)/𝑑𝑓, and π‘‘πΏξ…ž(𝑓)/𝑑𝑓 are depicted, respectively, in the frequency range π‘“βˆˆ[0,10] [MHz], whereas the variations of these quantities in the frequency range π‘“βˆˆ[0.01,3] [GHz] are depicted in Figures 7, 8, 9, and 10, respectively. Let the frequency spectrum of the signal being transmitted is [𝑓0βˆ’π΅/2,𝑓0+𝐡/2] (𝑓0 is the central frequency of the signal spectrum and 𝐡 the signal bandwith). If the integral of function in Figure 5 taken between 𝑓0βˆ’π΅/2 and 𝑓0+𝐡/2 is less than 0.01, then we see from Figure 3 that it may be taken π‘…ξ…ž(𝑓)β‰ˆπ‘…ξ…ž(𝑓0), for π‘“βˆˆ[𝑓0βˆ’π΅/2,𝑓0+𝐡/2]. And by using Figure 5 we obtain in the most conservative approach that 𝐡≀37 [kHz]. Similarly, if the integral of function in Figure 9 taken between 𝑓0βˆ’π΅/2 and 𝑓0+𝐡/2 is less than 0.1, then we see from Figure 5 that it, also, holds π‘…ξ…ž(𝑓)β‰ˆπ‘…ξ…ž(𝑓0), for π‘“βˆˆ[𝑓0βˆ’π΅/2,𝑓0+𝐡/2]. And by using Figure 9 we obtain in the most conservative approach that 𝐡≀770 [kHz].

For a lossless transmission line (β‡”π‘…ξ…ž=0[Ξ©/m] and πΊξ…ž=0  [S/m]) with linear and homogeneous dielectric the phase-velocity 𝑐 of electromagnetic perturbation (i.e., the propagation speed of current wave in the line) and characteristic impedance 𝑍0 are given by the following relations [1–3]: 1𝑐=βˆšπΏξ…žβ‹…πΆξ…ž=1βˆšπœ€π‘‘β‹…πœ‡π‘‘=𝑐0βˆšπœ€π‘Ÿβ‹…πœ‡π‘Ÿ,𝑐0=1βˆšπœ€0β‹…πœ‡0β‰ˆ3β‹…108msξ‚„,𝑍0=ξ‚™πΏξ…žπΆξ…ž=1π‘β‹…πΆξ…ž=ξ‚™πœ‡π‘Ÿπœ€π‘Ÿβ‹…1πœ‹β‹…ξ‚™πœ‡0πœ€0𝑑⋅lnπ‘Žξ‚ξ‚™β‰ˆ120β‹…πœ‡π‘Ÿπœ€π‘Ÿξ‚€π‘‘β‹…lnπ‘Žξ‚[Ξ©],(2.14) where πœ€π‘Ÿ=πœ€π‘‘/πœ€0 is relative permittivity and πœ‡π‘Ÿ=πœ‡π‘‘/πœ‡0 relative permeability of dielectric (πœ€0β‰ˆ10βˆ’9/36πœ‹ [F/m] is permittivity and πœ‡0=4πœ‹β‹…10βˆ’7 [H/m] permeability of vacuum). The characteristic impedance of a lossy transmission line is generally defined as 𝑍0(𝑗⋅2πœ‹β‹…π‘“)=[(π‘…ξ…ž+𝑗⋅2πœ‹β‹…π‘“β‹…πΏξ…ž)/(πΊξ…ž+𝑗⋅2πœ‹β‹…π‘“β‹…πΆξ…ž)]1/2. In the case considered, on Figures 11 and 12 the variations of 𝑍0(𝑓)=|𝑍0(𝑗⋅2πœ‹β‹…π‘“)| and 𝜁(𝑓)=Arg[𝑍0(𝑗⋅2πœ‹β‹…π‘“)] in the frequency range π‘“βˆˆ[0.01,3] [GHz] are respectively depicted. In older telephony applications at lower frequencies, 𝑍0 was typically 600 [Ξ©] for air two-wire lines. For symmetric antenna feeding at frequencies up to 500 [MHz], sometimes the two-wire lines with standard characteristic impedances 𝑍0=240 or 300 [Ξ©] are used. At shorter distances in telephony and local computer networks, nowdays are used the twisted-pairs (two-wire lines with reduced inductance) with standard 𝑍0=100 [Ξ©] and the propagation speed approximately 𝑐0/2. For the coaxial lines the standard 𝑍0 is 50 or 75 [Ξ©] and their propagation speed is approximately 2𝑐0/3. For the printed transmission lines, 𝑍0 is in the range 100Γ·150 [Ξ©], and their propagation speed is approximately 𝑐0/2 [6].

For two-wire line being considered, in Figures 13, 14, 15, and 16 variations of several functions in the frequency range π‘“βˆˆ[0,3] [GHz] are depicted, which will be used in later consideration, πœ™1(𝑓)=2β‹…πœ‹β‹…π‘“β‹…πΏξ…ž(𝑓)π‘…ξ…ž(𝑓),πœ™2(𝑓)=2β‹…πœ‹β‹…π‘“β‹…πΆξ…žπΊξ…ž,πœ™31(𝑓)=√2β‹…πœ‹β‹…π‘“β‹…πΏξ…ž(𝑓)β‹…πΆξ…ž,πœ™4𝐢(𝑓)=ξ…žβ‹…π‘…ξ…ž(𝑓)πΊξ…žβ‹…πΏξ…ž(𝑓),πœ™5(𝑓)=2β‹…πœ‹β‹…π‘“π‘…ξ…ž(𝑓)/πΏξ…ž(𝑓)+πΊξ…ž/πΆξ…ž=πœ™1(𝑓)1+1/πœ™4.(𝑓)(2.15)

From the numerical data associated with the monotonic functions in Figures 13, 14, and 16 it is obtained πœ™1(110.9KHz)β‰ˆ1, πœ™1(1289.9KHz)β‰ˆ10, πœ™1(10MHz)β‰ˆ32.653≫1, πœ™2(110.9KHz)β‰ˆ13.943β‹…109 and πœ™4(0)β‰ˆ1.391β‹…1010. Herefrom and from (2.15) it follows πœ™1(𝑓)β‰ˆπœ™5(𝑓). Since in this case the Heaviside’s condition [7] [β‡”πœ™4(𝑓)=1] is not satisfied, distortionless transmission is not possible. Another two functions, Ξ›(𝑓)=|Ξ“(𝑗⋅2πœ‹β‹…π‘“)| and πœ—(𝑓)=Arg[Ξ“(𝑗⋅2πœ‹β‹…π‘“)] [β€œΞ“β€ are the propagation function, see (A.10) in Appendix], also, play important role in analysis and they are depicted in Figures 17 and 18, respectively, in range π‘“βˆˆ[0.01,3] [GHz]. From data associated with these functions it is obtained: Ξ› (10 MHz) β‰ˆ 0.319, Ξ› (3 GHz) β‰ˆ 94.598, πœ—(10MHz)β‰ˆ89.123 [deg] and πœ— (3 GHz) β‰ˆ 89.953 [deg].

Since βˆšΞ“(𝑗⋅2πœ‹β‹…π‘“)=[π‘…ξ…ž(𝑓)+𝑗⋅2πœ‹β‹…π‘“β‹…πΏξ…ž(𝑓)]β‹…(πΊξ…ž+𝑗⋅2πœ‹β‹…π‘“β‹…πΆξ…ž)=Ξ›(𝑓)β‹…exp[π‘—β‹…πœ—(𝑓)] and since in the range π‘“βˆˆ[0.01,3] [GHz] it holds: πœ™1(𝑓)β‰ˆπœ™5(𝑓)≫1, πœ™2(𝑓)≫1, Ξ›(𝑓)∈[0.319,94.598] and πœ—(𝑓)∈[89.123,89.953] [deg], then: Ξ›(𝑓)β‰ˆ2πœ‹β‹…π‘“β‹…[πΏξ…ž(𝑓)β‹…πΆξ…ž]1/2=1/πœ™3(𝑓),πœ—(𝑓)=πœ‹/2βˆ’πœ’(𝑓)[0<πœ’(𝑓)<πœ‹/200] and Ξ“(𝑗⋅2πœ‹β‹…π‘“)=Ξ›(𝑓)β‹…exp(π‘—β‹…πœ‹/2)β‹…exp[βˆ’π‘—β‹…πœ’(𝑓)]=𝑗⋅Λ(𝑓)β‹…{cos[πœ’(𝑓)]βˆ’π‘—β‹…sin[πœ’(𝑓)]}={sin[πœ’(𝑓)]+𝑗⋅cos[πœ’(𝑓)]}/πœ™3(𝑓), where the deviation angle πœ’(𝑓)=πœ‹/2βˆ’πœ—(𝑓) can be approximated (The percentage error of this approximation is positive and <0.032% in the entire frequency range π‘“βˆˆ[0.01,3] [GHz].) with, πœ‹πœ’(𝑓)=2πœ‹βˆ’πœ—(𝑓)=2βˆ’12ξƒ©πΏβ‹…π‘Žtan2πœ‹β‹…π‘“β‹…ξ…ž(𝑓)/π‘…ξ…ž(𝑓)+πΆξ…ž/πΊξ…ž1βˆ’4β‹…πœ‹2⋅𝑓2πΏξ€·ξ€·ξ…ž(𝑓)β‹…πΆξ…žξ€Έ/ξ€·π‘…ξ…ž(𝑓)β‹…πΊξ…žξƒͺβ‰ˆ1ξ€Έξ€Έ2ξ‚΅π‘…β‹…π‘Žtanξ…ž(𝑓)/πΏξ…ž(𝑓)+πΊξ…ž/πΆξ…žξ‚Άβ‰ˆπ‘…2πœ‹β‹…π‘“ξ…ž(𝑓)/πΏξ…ž(𝑓)+πΊξ…ž/πΆξ…ž.4πœ‹β‹…π‘“(2.16)

For the transmission line with length β„“ let us define the functions: πœ€(πœ”)=πœ’(πœ”/2πœ‹)=πœ‹/2βˆ’πœ—(πœ”/2πœ‹) and πœƒ(π‘—β‹…πœ”)=Ξ“(π‘—β‹…πœ”)β‹…(β„“βˆ’π‘₯)=𝐴(πœ”,π‘₯)β‹…exp[π‘—β‹…πœ—(πœ”/2πœ‹)]=𝐴(πœ”,π‘₯)β‹…{sin[πœ€(πœ”)]+𝑗⋅cos[πœ€(πœ”)]}{π‘₯∈[0,β„“]}, where 𝐴(πœ”,π‘₯)=|Ξ“(π‘—β‹…πœ”)|β‹…(β„“βˆ’π‘₯)=Ξ›(πœ”/2πœ‹)β‹…(β„“βˆ’π‘₯). For this line, in frequency range π‘“βˆˆ[0.01,3] [GHz] we have 𝐴(πœ”,π‘₯)β‰ˆπœ”β‹…[πΏξ…ž(πœ”/2πœ‹)β‹…πΆξ…ž]1/2β‹…(β„“βˆ’π‘₯)=(β„“βˆ’π‘₯)/πœ™3(πœ”/2πœ‹) and 0<πœ€(πœ”)<πœ‹/200β€”whereby πœƒ(π‘—β‹…πœ”) becomes almost pure imaginary number. We could have obtained this result in a different way. To se that, let us write βˆšΞ“(𝑗⋅2πœ‹β‹…π‘“)=[π‘…ξ…ž(𝑓)+𝑗⋅2πœ‹β‹…π‘“β‹…πΏξ…ž(𝑓)]β‹…(πΊξ…ž+𝑗⋅2πœ‹β‹…π‘“β‹…πΆξ…ž)=π‘Ž(𝑓)+𝑗⋅𝑏(𝑓), where it holds, π‘Žξ„Άξ„΅ξ„΅ξ„΅βŽ·(𝑓)=12β‹…πΏξ…ž(𝑓)β‹…πΆξ…žβŽ§βŽͺ⎨βŽͺβŽ©ξƒŽξ‚Έ(2πœ‹β‹…π‘“)2+π‘…ξ…ž(𝑓)2πΏξ…ž(𝑓)2ξ‚Ήβ‹…ξ‚Έξ‚΅(2πœ‹β‹…π‘“)2+πΊξ…ž2πΆξ…ž2+π‘…ξ‚Άξ‚Ήξ…ž(𝑓)πΏξ…žβ‹…πΊ(𝑓)ξ…žπΆξ…žβˆ’(2πœ‹β‹…π‘“)2⎫βŽͺ⎬βŽͺ⎭attenuation”constant”,ξ„Άξ„΅ξ„΅ξ„΅βŽ·π‘(𝑓)=12β‹…πΏξ…ž(𝑓)β‹…πΆξ…žβŽ§βŽͺ⎨βŽͺβŽ©ξƒŽξ‚Έ(2πœ‹β‹…π‘“)2+π‘…ξ…ž(𝑓)2πΏξ…ž(𝑓)2ξ‚Ήβ‹…ξ‚Έξ‚΅(2πœ‹β‹…π‘“)2+πΊξ…ž2πΆξ…ž2βˆ’π‘…ξ‚Άξ‚Ήξ…ž(𝑓)πΏξ…žβ‹…πΊ(𝑓)ξ…žπΆξ…ž+(2πœ‹β‹…π‘“)2⎫βŽͺ⎬βŽͺ⎭phase”constant”.(2.17) The previous two functions are depicted in Figures 19 and 20 in the frequency range π‘“βˆˆ[0,3] [GHz].

From relations (2.17) we obtain the approximations π‘Žπ‘Ž(𝑓) and π‘Žπ‘(𝑓) of π‘Ž(𝑓) and 𝑏(𝑓), respectively, in the frequency range π‘“βˆˆ[0.01,3] [GHz], since there it holds πœ™1(𝑓)≫1 and πœ™2(𝑓)≫1, 1π‘Žπ‘Ž(𝑓)β‰ˆ2βŽ‘βŽ’βŽ’βŽ£π‘…ξ…žξƒŽ(𝑓)β‹…πΆξ…žπΏξ…ž(𝑓)+πΊξ…žβ‹…ξƒŽπΏξ…ž(𝑓)πΆξ…žβŽ€βŽ₯βŽ₯⎦,βˆšπ‘Žπ‘(𝑓)β‰ˆπΏξ…ž(𝑓)β‹…πΆξ…žξƒ―1(𝑓)2πœ‹β‹…π‘“+⋅𝑅16πœ‹β‹…π‘“ξ…ž(𝑓)πΏξ…žβˆ’πΊ(𝑓)ξ…žπΆξ…žξ‚Ή2ξƒ°,and,also,wehave,𝑍0ξƒŽ(𝑗⋅2πœ‹β‹…π‘“)=π‘…ξ…ž(𝑓)+𝑗⋅2πœ‹β‹…π‘“β‹…πΏξ…ž(𝑓)πΊξ…ž+𝑗⋅2πœ‹β‹…π‘“β‹…πΆξ…žβ‰ˆξƒŽπΏξ…ž(𝑓)πΆξ…žβ‹…ξ‚»11βˆ’π‘—β‹…ξ‚Έπ‘…4πœ‹β‹…π‘“ξ…ž(𝑓)πΏξ…žβˆ’πΊ(𝑓)ξ…žπΆξ…ž.ξ‚Ήξ‚Ό(2.18)

The functions π‘Žπ‘Ž(𝑓) and π‘Žπ‘(𝑓) are depicted in Figures 21 and 22, respectively, in the frequency range π‘“βˆˆ[0.01,3] [GHz], where we have as previously that it holds Ξ“(π‘—β‹…πœ”)β‰ˆπ‘Žπ‘Ž(πœ”/2πœ‹)+π‘—β‹…π‘Žπ‘(πœ”/2πœ‹)β‰ˆ{sin[πœ€(πœ”)]+𝑗⋅cos[πœ€(πœ”)]}/πœ™3(πœ”/2πœ‹), as it has been expected.

We will now emphasize the importance of function πœƒ=πœƒ(𝑠,π‘₯)=Ξ“(𝑠)β‹…(β„“βˆ’π‘₯){π‘₯∈[0,β„“]} in the following.

(a) Constituting of functions sinh(πœƒ)/πœƒ and tanh(πœƒ/2)/(πœƒ/2) that play fundamental role in producing uniform three-terminal networks nominally equivalent to short-line segments [7] and in realization of these networks in the specified frequency range (𝑓0βˆ’π΅/2,𝑓0+𝐡/2) by approximately equivalent three-terminal lumped 𝑅𝐿𝐢 networks. The purpose of this approach is to involve the application of PSPICE, so as to facilitate the steady-state analysis of transmission lines with arbitrary terminations and band-limited signals, instead of solving the pair of so-called telegraph equations, hyperbolic, linear, partial diffrential equations obtained from relations (A.4) in the Appendix, πœ•2𝑒(𝑑,π‘₯)πœ•π‘₯2=πΏξ…žβ‹…πΆξ…žβ‹…πœ•2𝑒(𝑑,π‘₯)πœ•π‘‘2+ξ€·πΏξ…žβ‹…πΊξ…ž+πΆξ…žβ‹…π‘…ξ…žξ€Έβ‹…πœ•π‘’(𝑑,π‘₯)πœ•π‘‘+π‘…ξ…žβ‹…πΊξ…žπœ•β‹…π‘’(𝑑,π‘₯),2𝑖(𝑑,π‘₯)πœ•π‘₯2=πΏξ…žβ‹…πΆξ…žβ‹…πœ•2𝑖(𝑑,π‘₯)πœ•π‘‘2+ξ€·πΏξ…žβ‹…πΊξ…ž+πΆξ…žβ‹…π‘…ξ…žξ€Έβ‹…πœ•π‘–(𝑑,π‘₯)πœ•π‘‘+π‘…ξ…žβ‹…πΊξ…žβ‹…π‘–(𝑑,π‘₯).(2.19) To alternatively determine the voltage and current variations in time at any place on the finite length line, we may firstly perform the Fourier analysis of excitation signal and retain a reasonable number of its spectral components, then determine their transfer one at a time to the specified place on the transmission line by using (A.17) from the Appendix and finally synthesize the overall response by superposition of the obtained single-frequency responses.

(b) Calculation of 𝑀(𝑠,π‘₯), 𝑁(𝑠,π‘₯), π‘ˆ(𝑠,π‘₯), and 𝐼(𝑠,π‘₯) from (A.17) and 𝑍(𝑠,π‘₯) from (A.18), in general, and for the finite length open-circuited line [𝑍𝐿(𝑠)β†’βˆž], in particular, by using expansions: 𝑀(𝑠,π‘₯)=π‘ˆ(𝑠,π‘₯)=βˆπ‘ˆ(𝑠,0)βˆžπ‘›=1ξ€½[]1+(2Ξ“β‹…(β„“βˆ’π‘₯))/((2π‘›βˆ’1)β‹…πœ‹)2ξ€Ύβˆβˆžπ‘›=1ξ€½[]1+(2Ξ“β‹…β„“)/((2π‘›βˆ’1)β‹…πœ‹)2ξ€Ύ,𝑁(𝑠,π‘₯)=𝐼(𝑠,π‘₯)=𝐼(𝑠,0)β„“βˆ’π‘₯β„“β‹…βˆβˆžπ‘›=1ξ€½[]1+(Ξ“β‹…(β„“βˆ’π‘₯))/(π‘›β‹…πœ‹)2ξ€Ύβˆβˆžπ‘›=1ξ€Ί1+((Ξ“β‹…β„“)/(π‘›β‹…πœ‹))2ξ€»,𝑍(𝑠,π‘₯)=π‘ˆ(𝑠,π‘₯)=∏𝐼(𝑠,π‘₯)βˆžπ‘›=1ξ€½[]1+(2Ξ“β‹…(β„“βˆ’π‘₯))/((2π‘›βˆ’1)β‹…πœ‹)2ξ€ΎβˆΞ“β‹…(β„“βˆ’π‘₯)β‹…βˆžπ‘›=1ξ€½[]1+(Ξ“β‹…(β„“βˆ’π‘₯))/(π‘›β‹…πœ‹)2⋅𝑍0𝑍𝐿,(𝑠)β†’βˆž(2.20) thus placing into evidence the pole-zero location of 𝑀(𝑠,π‘₯), 𝑁(𝑠,π‘₯), and 𝑍(𝑠,π‘₯).

The relations (2.20) are produced by using Weierstass’s factor expansions [8] of transcendental functions appearing in (A.17) and (A.18) into infinite product forms, sinh(πœƒ)πœƒ=βˆžξ‘π‘›=1ξ‚΅πœƒ1+2𝑛2β‹…πœ‹2ξ‚Ά,cosh(πœƒ)=βˆžξ‘π‘›=1ξ‚Έ1+4β‹…πœƒ2(2π‘›βˆ’1)2β‹…πœ‹2ξ‚Ή.(2.21)

For the open-circuited two-wire line with length β„“=0.1 [m] in Figures 23 Γ· 26 are depicted for π‘₯∈[0,0.1] [m] and π‘“βˆˆ[0,3] [GHz] the variations of |𝑀(𝑗⋅2πœ‹β‹…π‘“,π‘₯)|, Arg[𝑀(𝑗⋅2πœ‹β‹…π‘“,π‘₯)] [deg], |𝑁(𝑗⋅2πœ‹β‹…π‘“,π‘₯)| and Arg[𝑁(𝑗⋅2πœ‹β‹…π‘“,π‘₯)] [deg], respectively, on the grid(x) Γ— grid(f) = 50 Γ— 60. In Figures 23 and 25 we observe the presence of voltage and current resonances at different places on the line, as is it might be expected from (2.20), at six discrete frequencies altogether, in the two disjoint sets. Also, we may notice in Figures 24 and 26 that variations of Argfunctions are very complex with abrupt transitions. For the line terminated in 𝑍𝐿(𝑠) the diagrams analogous to those in Figures 23 Γ· 26 could also be drawn easily, provided that the impedance 𝑍0(𝑠) is taken into account [see relation (A.17)].

When the line is sufficiently short, some approximations can be made leading to satisfactory results without need to cope with the cumulative products (2.21). To see that, suppose that line length is ℓ≀ℓ0<πœ‹/{2β‹…|[Ξ“(𝑗⋅2πœ‹β‹…π‘“)|max}β‰ˆ16.6 [mm] {⇔|πœƒ|max<πœ‹/2} and assume, say, β„“0=16 [mm]. Recall that =πœƒ(π‘—β‹…πœ”,π‘₯)=Ξ“(π‘—β‹…πœ”)β‹…(β„“βˆ’π‘₯)=|πœƒ(π‘—β‹…πœ”,π‘₯)|β‹…exp{𝑗⋅arg[Ξ“(π‘—β‹…πœ”)]}{π‘₯∈[0,β„“]}, then take (2.21) and write sinh(πœƒ)πœƒ=βˆžξ‘π‘›=1ξ‚΅πœƒ1+2𝑛2β‹…πœ‹2=expβˆžξ“π‘›=1ξ‚΅πœƒln1+2𝑛2β‹…πœ‹2ξ‚Άξƒ­=ξƒ¬πœƒexp2πœ‹2β‹…βˆžξ“π‘›=11𝑛2βˆ’πœƒ42β‹…πœ‹4β‹…βˆžξ“π‘›=11𝑛4+πœƒ63β‹…πœ‹6β‹…βˆžξ“π‘›=11𝑛6βˆ’πœƒ84β‹…πœ‹8β‹…βˆžξ“π‘›=11𝑛8+πœƒ105β‹…πœ‹10β‹…βˆžξ“π‘›=11𝑛10ξƒ­ξ‚΅πœƒΒ±β€¦.=exp26βˆ’πœƒ4+πœƒ1806βˆ’πœƒ28358+πœƒ3780010ξ‚Ά,467775Β±β‹―cosh(πœƒ)=βˆžξ‘π‘›=1ξ‚Έ1+4β‹…πœƒ2(2π‘›βˆ’1)2β‹…πœ‹2ξ‚Ήξƒ―=expβˆžξ“π‘›=1ξ‚Έln1+4β‹…πœƒ2(2π‘›βˆ’1)2β‹…πœ‹2ξ‚Ήξƒ°=exp4β‹…πœƒ2πœ‹2β‹…βˆžξ“π‘›=11(2π‘›βˆ’1)2βˆ’8β‹…πœƒ4πœ‹4β‹…βˆžξ“π‘›=11(2π‘›βˆ’1)4+64β‹…πœƒ63β‹…πœ‹6β‹…βˆžξ“π‘›=11(2π‘›βˆ’1)6βˆ’64β‹…πœƒ8πœ‹8β‹…βˆžξ“π‘›=11(2π‘›βˆ’1)8+1024β‹…πœƒ105β‹…πœ‹10β‹…βˆžξ“π‘›=11(2π‘›βˆ’1)10ξƒ­ξ‚΅πœƒΒ±β‹―=exp22βˆ’πœƒ4+πœƒ126βˆ’4517β‹…πœƒ8+252031β‹…πœƒ10ξ‚Ά.14175Β±β‹―(2.22)

The following finite sums of infinite series [9] have been exploited in (2.22), 𝐴2𝑝=βˆžξ“π‘›=11𝑛2𝑝𝑝=1,5,𝐴2=πœ‹26,𝐴4=πœ‹490,𝐴6=πœ‹6945,𝐴8=πœ‹8,𝐴945010=5β‹…28β‹…πœ‹10,𝐡33β‹…10!2𝑝=βˆžξ“π‘›=11(2π‘›βˆ’1)2𝑝𝑝=1,5,𝐡2=πœ‹28,𝐡4=πœ‹496,𝐡6=πœ‹6960,𝐡8=17β‹…πœ‹8,𝐡16128010=31β‹…πœ‹1035β‹…81β‹…210.(2.23)

The infinite complex series (2.22) in almost pure imaginary πœƒ are convergent for ℓ≀ℓ0,π‘₯∈[0,β„“] and π‘“βˆˆ[0,3] [GHz]. If β„“ is sufficiently less than β„“0 and π‘₯∈[0,β„“], then by retaining only the first five πœƒ terms in (2.22) the following small-error approximations are produced sinh(πœƒ)β‰ˆsinhπ΄ξ‚΅πœƒ(πœƒ)=πœƒβ‹…exp26βˆ’πœƒ4+πœƒ1806βˆ’πœƒ28358+πœƒ3780010ξ‚Ά,467775cosh(πœƒ)β‰ˆcoshπ΄ξ‚΅πœƒ(πœƒ)=exp22βˆ’πœƒ4+πœƒ126βˆ’4517β‹…πœƒ8+252031β‹…πœƒ10ξ‚Ά.14175(2.24)

For the open-circuited two-wire line with β„“=0.01 [m], in Figures 27, 28, 29, and 30 they are depicted on grid(x) Γ— grid(f) = 40 Γ— 60 in the range π‘“βˆˆ[0,3] [GHz] and range π‘₯∈[0,0.01] [m], respectively:(i) the voltage-transmittance magnitude approximation percentage error:ER1(𝑓,π‘₯)={|[coshπ΄πœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)/cosh𝐴(𝑗⋅2πœ‹β‹…π‘“,0)]/[coshπœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)/cosh(𝑗⋅2πœ‹β‹…π‘“,0)]|βˆ’1}β‹…100;(ii) the voltage-transmittance phase approximation absolute error:ER2(𝑓,π‘₯)=arg[coshπ΄πœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)β‹…cosh(𝑗⋅2πœ‹β‹…π‘“,0)/cosh𝐴(𝑗⋅2πœ‹β‹…π‘“,0)β‹…coshπœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)];(iii) the current-transmittance magnitude approximation percentage error:ER3(𝑓,π‘₯)={|[sinhπ΄πœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)/sinh𝐴(𝑗⋅2πœ‹β‹…π‘“,0)]/[sinhπœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)/sinh(𝑗⋅2πœ‹β‹…π‘“,0)]|βˆ’1}β‹…100;(iv) the current-transmittance phase approximation absolute error:ER4(𝑓,π‘₯)=arg[sinhπ΄πœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)β‹…sinh(𝑗⋅2πœ‹β‹…π‘“,0)/sinh𝐴(𝑗⋅2πœ‹β‹…π‘“,0)β‹…sinhπœƒ(𝑗⋅2πœ‹β‹…π‘“,π‘₯)].

It can be observed in Figures 27 Γ· 30 that in the given range of 𝑓 and π‘₯, the errors ER1 and ER3 are negative (|ER1|<0.06% and |ER3|<10βˆ’5%), whereas the errors ER2 and ER4 are positive (ER2<3.36β‹…10βˆ’4 [deg] and ER4<5.75β‹…10βˆ’8 [deg]). The upper limit of |ER3| is lower than of |ER1| and the upper limit of ER4 is lower than of ER2.

If |πœƒ| is sufficiently small (|πœƒ|β‰ͺ1), from (2.24) further approximations are obtained:(i)sinh(πœƒ)β‰ˆsinhAξ‚΅πœƒ(πœƒ)=πœƒβ‹…exp26βˆ’πœƒ4+πœƒ1806βˆ’πœƒ28358+πœƒ3780010ξ‚Άξ‚΅πœƒ467775β‰ˆπœƒβ‹…1+26βˆ’πœƒ4+πœƒ1806βˆ’πœƒ28358+πœƒ3780010ξ‚Άπœƒ467775=πœƒ+36βˆ’πœƒ5+πœƒ1807βˆ’πœƒ28359+πœƒ3780011πœƒ467775β‰ˆπœƒ+36,(2.25)which partly resembles to Maclaurin’s expansion of sinh(ΞΈ), that is, sinh(πœƒ)=πœƒ+πœƒ3/3!+πœƒ5/5!+…,(ii)cosh(πœƒ)β‰ˆcoshπ΄ξ‚΅πœƒ(πœƒ)=exp22βˆ’πœƒ4+πœƒ126βˆ’4517β‹…πœƒ8+252031β‹…πœƒ10ξ‚Άπœƒ14175β‰ˆ1+22βˆ’πœƒ4+πœƒ126βˆ’4517β‹…πœƒ8+252031β‹…πœƒ10πœƒ14175β‰ˆ1+22,(2.26)which, partly resembles to Maclaurin’s expansion of cosh(ΞΈ), that is, cosh(πœƒ)=1+πœƒ2/2!+πœƒ4/4!+….(iii) combining (i) and (ii) it follows that ξ‚€πœƒtanh2ξ‚β‰ˆtanhπ΄ξ‚€πœƒ2=ξ€·πœƒπœƒβ‹…2ξ€Έ+24ξ€·πœƒ6β‹…2ξ€Έ+8.(2.27)

The functions sinh(πœƒ)/πœƒ and tanh(πœƒ/2)/(πœƒ/2) play fundamental role in effort to transform short transmission line segments into equivalent lumped three-terminal RLC networks [7]. The same role is played their respective approximating functions sinh𝐴(πœƒ)/πœƒ and tanh𝐴(πœƒ/2)/(πœƒ/2), obtained when |πœƒ|β‰ͺ1. For two-wire line with length β„“=1 [mm], in Figures 31, 32, 33, and 34, the magnitude approximation absolute error ER5(𝑓,π‘₯)=|(πœƒ+πœƒ3/6)|βˆ’|sinh(πœƒ)| and three percentage magnitude approximation errors: ER6(𝑓,π‘₯)={|{πœƒβ‹…(πœƒ2+24)/[6β‹…(πœƒ2+8)]}/tanh(πœƒ/2)|βˆ’1}β‹…100, ER7(𝑓,π‘₯)=[|πœƒ/sinh(πœƒ)|βˆ’1]β‹…100 and ER8(𝑓,π‘₯)={|(πœƒ/2)/tanh(πœƒ/2)|βˆ’1}β‹…100, are depicted on grid(x) Γ— grid(f) = 40 Γ— 60 in the frequency range π‘“βˆˆ[0,3] [GHz] and range of π‘₯∈[0,1] [mm]. Obviously, all these errors can be kept arbitrarily small in magnitude in the entire frequency range π‘“βˆˆ[0,3] [GHz] if sufficiently small step of uniform line segmentation is applied. The key action in achieving the previous goals is providing the maximum of β„“0 to be much less than 1/|Ξ“(𝑗⋅2πœ‹β‹…π‘“max)(⇔|πœƒmax|β‰ͺ1). For example, from the numerical data associated with Figure 17, it can be calculated that β„“0 should be at most 1 [cm] on the upper limit of VHF and at most 1 [mm] on the upper limit of UHF band. Therein it has been tacitly assumed that transmission line is uniformly partitioned in segments of length β„“0, which is at least ten times less than 1/|Ξ“(𝑗⋅2πœ‹β‹…π‘“max)|.

The equations (A.15) and (A.16) offer an opportunity to view on a transmission line segment with length β„“0 as on a linear two-port network (Figure 35(a)) with boundary conditions π‘ˆ(𝑠,0) and 𝐼(𝑠,0) at the input and π‘ˆ(𝑠,β„“0) and 𝐼(𝑠,β„“0) at the output. The chain-matrix 𝐅 of this network reads ⎑⎒⎒⎣⎀βŽ₯βŽ₯βŽ¦βŽ‘βŽ’βŽ’βŽ£π‘ˆξ€·π‘ˆ(𝑠,0)𝐼(𝑠,0)=𝐅⋅𝑠,β„“0𝐼𝑠,β„“0ξ€ΈβŽ€βŽ₯βŽ₯βŽ¦βŽ‘βŽ’βŽ’βŽ’βŽ£ξ€·,𝐅=coshΞ“β‹…β„“0𝑍0ξ€·β‹…sinhΞ“β‹…β„“0ξ€Έξ€·sinhΞ“β‹…β„“0𝑍0ξ€·coshΞ“β‹…β„“0ξ€ΈβŽ€βŽ₯βŽ₯βŽ₯⎦.(2.28)

Denote 𝑍(𝑠)=(π‘…ξ…ž+πΏξ…žβ‹…π‘ )β‹…β„“0, π‘Œ(𝑠)=(πΊξ…ž+πΆξ…žβ‹…π‘ )β‹…β„“0 and πœƒ(𝑠,0)=Ξ“(𝑠)β‹…β„“0. In study of short transmission lines it is found convenient to replace them, either with nominally equivalent 𝑇 networks (Figure 35(b)) or with nominally equivalent Ξ  networks (Figure 35(c)) [7], whose immitances are given as follows π‘ξ…žξ‚»[]=𝑍⋅tanhπœƒ(𝑠,0)/2ξ‚Όπœƒ(𝑠,0)/2,π‘Œξ…žξ‚»[]=π‘Œβ‹…sinhπœƒ(𝑠,0)ξ‚Ό,π‘πœƒ(𝑠,0)ξ…žξ…žξ‚»[]=𝑍⋅sinhπœƒ(𝑠,0)ξ‚Όπœƒ(𝑠,0),π‘Œξ…žξ…žξ‚»[]=π‘Œβ‹…tanhπœƒ(𝑠,0)/2ξ‚Ό.πœƒ(𝑠,0)/2(2.29) The aforementioned criterion for selection of β„“0 relies on attempt to find convenient πœƒ(𝑠,0)=Ξ“(𝑠)β‹…β„“0 that provides physical realizability of immitances π‘ξ…ž, π‘Œξ…ž, π‘ξ…žξ…ž, and π‘Œξ…žξ…ž by lumped, transformerless RLC networks. The necessary and sufficient condition for existence and realizability of these immitances is that they must be rational, positive real functions in complex frequency s [10]. Observe that the immitances 𝑍(𝑠) and π‘Œ(𝑠) are realizable by trivial two-element-kind RLC networks. Nevertheless, we will show now that, in general, the imitances π‘ξ…ž, π‘Œξ…ž, π‘ξ…žξ…ž, and π‘Œξ…žξ…ž are not realizable by lumped RLC networks, except in the limiting case when β„“0 is as small, so that the complex approximations hold: sinh(πœƒ)/πœƒβ‰ˆ1 and tanh(πœƒ/2)/(πœƒ/2)β‰ˆ1 (observe that if πœƒβ†’0, then π‘ξ…ž and π‘ξ…žξ…žβ†’π‘ and π‘Œξ…ž and π‘Œξ…žξ…žβ†’π‘Œ). To see that, recall that for βˆšΞ“(π‘—β‹…πœ”)=(π‘…ξ…ž+π‘—β‹…πœ”β‹…πΏξ…ž)β‹…(πΊξ…ž+π‘—β‹…πœ”β‹…πΆξ…ž)=|Ξ“(π‘—β‹…πœ”)|β‹…exp{𝑗⋅arg[Ξ“(π‘—β‹…πœ”)]}(πœ”=2πœ‹β‹…π‘“), in frequency range π‘“βˆˆ[0.01,3] [GHz] it holds(a)πœ”β‹…πΏξ…ž/π‘…ξ…žβˆ§πœ”/(π‘…ξ…ž/πΏξ…ž+πΊξ…ž/πΆξ…ž)∈[32.652,609.312]≫1, πœ”β‹…πΆξ…ž/πΊξ…žβˆˆ[1.257β‹…1012,3.771β‹…1014]≫1,(b)|Ξ“(π‘—β‹…πœ”)|β‰ˆπœ”β‹…(πΏξ…žβ‹…πΆξ…ž)1/2∈[0.319,94.598], arg[Ξ“(π‘—β‹…πœ”)]∈[89.122,89.952] [deg],(c)arg[Ξ“(π‘—β‹…πœ”)]=πœ‹/2βˆ’πœ€(πœ”), where, πœ‹πœ€(πœ”)=2[]=πœ‹βˆ’argΞ“(π‘—β‹…πœ”)2βˆ’12ξƒ©ξ€·β‹…π‘Žtanπœ”β‹…πΏξ…žξ€Έ/π‘…ξ…ž+ξ€·πœ”β‹…πΆξ…žξ€Έ/πΊξ…žξ€·πΏ1βˆ’ξ…žβ‹…πΆξ…žξ€Έ/ξ€·π‘…ξ…žβ‹…πΊξ…žξ€Έβ‹…πœ”2ξƒͺβ‰ˆ12ξ‚΅π‘…β‹…π‘Žtanξ…ž/πΏξ…ž+πΊξ…ž/πΆξ…žπœ”ξ‚Άβ‰ˆπ‘…ξ…ž/πΏξ…ž+πΊξ…ž/πΆξ…ž.2β‹…πœ”(2.30)(d)Ξ“(π‘—β‹…πœ”)=|Ξ“(π‘—β‹…πœ”)|β‹…{sin[πœ€(πœ”)]+𝑗⋅cos[πœ€(πœ”)]}, πœ€(πœ”)∈(0,πœ‹/200) and πœƒ(π‘—β‹…πœ”,π‘₯)=Ξ“(π‘—β‹…πœ”)β‹…(β„“0βˆ’π‘₯)=|πœƒ(π‘—β‹…πœ”,π‘₯)|β‹…{sin[πœ€(πœ”)]+𝑗⋅cos[πœ€(πœ”)]}. Observe that πœƒ(π‘—β‹…πœ”,π‘₯) is produced as almost pure imaginary number.(e) Since π‘₯∈[0,β„“0] and |πœƒ(π‘—β‹…πœ”,π‘₯)|β‰ˆπœ”β‹…(πΏξ…žβ‹…πΆξ…ž)1/2β‹…(β„“0βˆ’π‘₯)=𝐴(πœ”,π‘₯), then by selecting β„“0 sufficiently small, 𝐴(πœ”,π‘₯) can always be produced arbitrarily small.

Bearing in mind the properties (a) Γ· (e), we obtain for sinh[πœƒ(π‘—β‹…πœ”,π‘₯)]/πœƒ(π‘—β‹…πœ”,π‘₯) the following: [][]}sinh{𝐴(πœ”,π‘₯)β‹…sinπœ€(πœ”)}β‹…cos{𝐴(πœ”,π‘₯)β‹…cosπœ€(πœ”)[][]}+[][]}𝐴(πœ”,π‘₯)β‹…{sinπœ€(πœ”)+𝑗⋅cosπœ€(πœ”)𝑗⋅cosh{𝐴(πœ”,π‘₯)β‹…sinπœ€(πœ”)}β‹…sin{𝐴(πœ”,π‘₯)β‹…cosπœ€(πœ”)[][]},𝐴(πœ”,π‘₯)β‹…{sinπœ€(πœ”)+𝑗⋅cosπœ€(πœ”)(2.31) that can be rewritten as sinh[πœƒ(π‘—β‹…πœ”,π‘₯)]/πœƒ(π‘—β‹…πœ”,π‘₯)=𝑅(πœ”,π‘₯)+𝑗⋅𝑄(πœ”,π‘₯). 𝑅(πœ”,π‘₯) and 𝑄(πœ”,π‘₯) are even and odd functions in πœ”, respectively, which are represented with the following expanded forms: 𝑅(πœ”,π‘₯)=sin2[]β‹…ξƒ©πœ€(πœ”)βˆžξ“π‘˜=0𝐴2π‘˜(πœ”,π‘₯)β‹…sin2π‘˜[]πœ€(πœ”)ξƒͺ⋅(2π‘˜+1)!βˆžξ“π‘š=0(βˆ’1)π‘šπ΄2π‘š(πœ”,π‘₯)β‹…cos2π‘š[]πœ€(πœ”)ξƒͺ(2π‘š)!+cos2[]β‹…ξƒ©πœ€(πœ”)βˆžξ“π‘›=0𝐴2𝑛(πœ”,π‘₯)β‹…sin2𝑛[]πœ€(πœ”)ξƒͺ⋅(2𝑛)!βˆžξ“π‘=0(βˆ’1)𝑝𝐴2𝑝(πœ”,π‘₯)β‹…cos2𝑝[]πœ€(πœ”)ξƒͺ,[][]β‹…(2𝑝+1)!𝑄(πœ”,π‘₯)=sinπœ€(πœ”)β‹…cosπœ€(πœ”)ξƒ―ξƒ©βˆžξ“π‘˜=0𝐴2π‘˜(πœ”,π‘₯)β‹…sin2π‘˜[]πœ€(πœ”)ξƒͺ⋅(2π‘˜)!βˆžξ“π‘š=0(βˆ’1)π‘šπ΄2π‘š(πœ”,π‘₯)β‹…cos2π‘š[]πœ€(πœ”)ξƒͺβˆ’ξƒ©(2π‘š+1)!βˆžξ“π‘›=0𝐴2𝑛(πœ”,π‘₯)β‹…sin2𝑛[]πœ€(πœ”)ξƒͺ⋅(2𝑛+1)!βˆžξ“π‘=0(βˆ’1)𝑝𝐴2𝑝(πœ”,π‘₯)β‹…cos2𝑝[]πœ€(πœ”).(2𝑝)!ξƒͺξƒ°(2.32) We must always bear in mind that πœ€(πœ”) is small [(c) and (2.30)] and that 𝐴(πœ”,π‘₯)=πœ”β‹…(πΏξ…žβ‹…πΆξ…ž)1/2β‹…(β„“0βˆ’π‘₯) can be made arbitrarily small by selecting β„“0 such that 𝐴(πœ”,β„“)|max=[2πœ‹β‹…π‘“β‹…(πΏξ…žβ‹…πΆξ…ž)1/2]|maxβ‹…β„“0β‰ͺ1 or equivalently β„“0β‰ͺ1/|Ξ“(𝑗⋅2πœ‹β‹…π‘“max)|. Then, retaining only the first two terms in each of the convergent infinite sums in (2.32), the approximations of 𝑅(πœ”,π‘₯) and 𝑄(πœ”,π‘₯) are obtained which hold for all π‘₯∈[0,β„“0] and for all πœ” corresponding to 𝑓 from the specified frequency range: 𝐴𝑅(πœ”,π‘₯)β‰ˆ1βˆ’2(πœ”,π‘₯)6[]βˆ’π΄β‹…cos2β‹…πœ€(πœ”)4(πœ”,π‘₯)48β‹…sin2[]πœ”2β‹…πœ€(πœ”)β‰ˆ1βˆ’2ℓ⋅𝐿′⋅𝐢′⋅0ξ€Έβˆ’π‘₯26,𝐴𝑄(πœ”,π‘₯)β‰ˆ2(πœ”,π‘₯)6[]β‰ˆπœ”β‹…sin2β‹…πœ€(πœ”)2β‹…πΏβ€²β‹…πΆξ…žβ‹…ξ€·β„“0ξ€Έβˆ’π‘₯26[]β‰ˆπœ”β‹…sin2β‹…πœ€(πœ”)2β‹…πΏξ…žβ‹…πΆξ…žβ‹…ξ€·β„“0ξ€Έβˆ’π‘₯23πœ”β‹…πœ€(πœ”)=6β‹…πΏξ…žβ‹…πΆξ…žβ‹…ξ€·β„“0ξ€Έβˆ’π‘₯2β‹…ξ‚΅π‘…ξ…žπΏξ…ž+πΊξ…žπΆξ…žξ‚Ά=πœ”6β‹…ξ€·β„“0ξ€Έβˆ’π‘₯2⋅𝑅′⋅𝐢′+πΊβ€²β‹…πΏξ…žξ€Έβ‰ͺ1.(2.33)

For π‘₯=0, from (2.31) and (2.33) it finally follows: []sinhπœƒ(π‘—β‹…πœ”,0)πœ”πœƒ(π‘—β‹…πœ”,0)=𝑅(πœ”,0)+𝑗⋅𝑄(πœ”,0)β‰ˆ1+𝑗⋅6β‹…ξ€·π‘…ξ…žβ‹…πΆξ…ž+πΊξ…žβ‹…πΏξ…žξ€Έβ‹…β„“20βˆ’πœ”2⋅𝐿′⋅𝐢′⋅ℓ206,[](2.34)sinhπœƒ(π‘—β‹…πœ”,0)πœƒ(π‘—β‹…πœ”,0)π‘—β‹…πœ”β†’π‘ (βˆ’πœ”2→𝑠2)βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’β†’Byanalyticcontinuation[πœƒ]sinh(𝑠,0)π‘ πœƒ(𝑠,0)β‰ˆ1+6β‹…ξ€·π‘…ξ…žβ‹…πΆξ…ž+πΊξ…žβ‹…πΏξ…žξ€Έβ‹…β„“20+𝑠2β‹…πΏξ…žβ‹…πΆξ…žβ‹…β„“206.(2.35)

Now, by using (2.29) and (2.35) we may generate the immitances Y’ and Z’’ (Figures 35(b) and 35(c)), π‘Œξ…ž[](𝑠)=π‘Œ(𝑠)β‹…sinhπœƒ(𝑠,0)=ξ€·πΊπœƒ(𝑠,0)ξ…ž+πΆξ…žξ€Έβ‹…π‘ β‹…β„“0⋅𝑠1+6β‹…ξ€·π‘…ξ…žβ‹…πΆξ…ž+πΊξ…žβ‹…πΏξ…žξ€Έβ‹…β„“20+𝑠2β‹…πΏξ…žβ‹…πΆξ…žβ‹…β„“206ξƒ­,𝑍(2.36)ξ…žξ…ž[](𝑠)=𝑍(𝑠)β‹…sinhπœƒ(𝑠,0)=ξ€·π‘…πœƒ(𝑠,0)ξ…ž+πΏξ…žξ€Έβ‹…π‘ β‹…β„“0⋅𝑠1+6β‹…ξ€·π‘…ξ…žβ‹…πΆξ…ž+πΊξ…žβ‹…πΏξ…žξ€Έβ‹…β„“20+𝑠2β‹…πΏξ…žβ‹…πΆξ…žβ‹…β„“206ξƒ­,(2.37) which are not realizable by lumped RLC networks, since they are not the positive real functions in complex frequency 𝑠 [10], except when β„“0β†’0. Putting it in other words we may say that if in the whole operating frequency range practically hold the three conditions: πœ”β‹…πΏξ…ž/π‘…ξ…žβ‰«1, πœ”β‹…πΆξ…ž/πΊξ…žβ‰«1, and β„“0βˆšβ‹…πœ”β‹…πΏξ…žβ‹…πΆξ…žβ‰ͺ1, the immitances π‘Œξ…ž(𝑠) and π‘ξ…žξ…ž(𝑠) (Figures 35(b) and 35(c)) are produced in the following simple form and are realizable by two-element-kind RLC networks [see (2.36) and (2.37)]: π‘Œξ…žξ€·πΊ(𝑠)=ξ…ž+πΆξ…žξ€Έβ‹…π‘ β‹…β„“0,π‘ξ…žξ…žξ€·π‘…(𝑠)=ξ…ž+πΏξ…žξ€Έβ‹…π‘ β‹…β„“0.(2.38) Relations (2.38) may be considered as a consequence of approximation sinh[πœƒ(𝑠,0)]β‰ˆ[πœƒ(𝑠,0)] applied to (2.36) and (2.37) when πœƒ(𝑠,0)β†’0. Similarly, under the conditions: πœ”β‹…πΏξ…ž/π‘…ξ…žβ‰«1, πœ”β‹…πΆξ…ž/πΊξ…žβ‰«1 and β„“0βˆšβ‹…πœ”β‹…πΏξ…žβ‹…πΆξ…žβ‰ͺ1, the complex approximation tanh[πœƒ(𝑠,0)/2]β‰ˆ[πœƒ(𝑠,0)/2] applied to (2.29) when πœƒ(𝑠,0)β†’0 gives the other two immitances from (2.29), which are necessary to accomplish forming of linear networks in Figures 35(b) and 35(c), which are nominally equivalent to the network in Figure 35(a). π‘ξ…žξ€·π‘…(𝑠)=ξ…ž+πΏξ…žξ€Έβ‹…π‘ β‹…β„“0,π‘Œξ…žξ…žξ€·πΊ(𝑠)=ξ…ž+πΆξ…žξ€Έβ‹…π‘ β‹…β„“0.(2.39)

3. Approximation of Two-Wire Line by Uniform RLCG Ladder and the Simulation Results

Let us consider a short two-wire line with length β„“=30 [mm] (or a longone partitioned in sections of length β„“). Assume that the bandwith of the signal being transmitted is 𝐡<770 [kHz] and that its central frequency is 𝑓0=1 [GHz]. Then, make the graph of function 𝑙(𝑓)=πœ™3(𝑓)=1/2πœ‹β‹…π‘“β‹…[πΏξ…ž(𝑓)β‹…πΆξ…ž)1/2]β‰ˆ1/|Ξ“(𝑗⋅2πœ‹β‹…π‘“)| (Figure 36) and from its associated numerical data find that 𝑙(109)β‰ˆ31.7 [mm]. Let the maximum length β„“0 of line segments be selected to satisfy the condition β„“0≀𝑙(109)/10β‰ˆ3.17 [mm]. Finally, assume β„“0=3 [mm] and calculate the number of cells 𝑁=β„“/β„“0=10 in uniform RLCG ladder purporting to represent the transmission line with length β„“ in frequency range π‘“βˆˆ[𝑓0βˆ’π΅/2,𝑓0+𝐡/2].

Assume 𝛿π‘₯=β„“0 and calculate the parameters of uniform lumped RLCG network representing the line segments of length β„“0 (see Figure 2). If the overall short-line parameters are 𝑅=π‘…ξ…žβ‹…β„“-resistance, 𝐿=πΏξ…žβ‹…β„“-inductance, 𝐢=πΆξ…žβ‹…β„“-capacitance, and 𝐺=𝐺Γ(𝑗⋅2πœ‹β‹…π‘“)β‹…β„“-conductance, then the lumped RLCG network parameters: π‘…ξ…žβ‹…π›Ώπ‘₯/2=𝑅/20, πΏξ…žβ‹…π›Ώπ‘₯/2=𝐿/20, πΆξ…žβ‹…π›Ώπ‘₯=𝐢/10, and πΊξ…žβ‹…π›Ώπ‘₯=𝐺/10, calculated at frequency 𝑓0=1 [GHz] according to (2.1), (2.2), ((2.8)–(2.11)), are given in Table 1. The RLCG network representing the short line with length β„“ is depicted in Figure 37, whereon the conductance elements 𝐺/10 (present in Figure 2) are omitted only for the simplicity of drawing but are included in the PSPICE simulation network. Also, observe that at frequency 𝑓0=1 [GHz] the quantity 2πœ‹β‹…π‘“0β‹…πΆξ…ž/πΊξ…ž takes on extremely high value. Let 𝑒𝑖 be the voltage of the point 𝑁𝑖(𝑖=1,41), with respect to the common node 0 (Figure 37).

Now we will present the results obtained by PSPICE simulation of the open-circuited network in Figure 37 and compare them to the results obtained by exact analysis of considered open-circuited line. The amplitude of excitation voltage 𝑒 in simulation was 1 [V], its frequency was 𝑓0=1 [GHz] and the initial phase 0 [deg]. The steady-state, odd numbered point voltages, and their phase angles obtained through PSPICE analysis of open-circuited network in Figure 37, are summarized in Table 2. Also, in this table the exactly obtained voltages at points on the line with distance π‘₯π‘š=(π‘šβˆ’1)β‹…β„“0/2(π‘š=1,21) from the line sending end are presented. To these points correspond the points nodes 𝑁2π‘šβˆ’1(π‘š=1,21) in the simulation RLCG ladder on Figure 37.

When analysis of long lines is considered in the time domain it is useful to resort to forming of multilevel hierarchical blocks in PSPICE. To see that, suppose that we are to consider transmission of a signal with frequency 𝑓0=1 [GHz], amplitude πΈπ‘š=10 [V], and zero initial phase in two-wire line with length β„“=4.5 [m] and parameters as in Table 1. Let us designate the ladder on Figure 37, which represents a two-wire line with length 3 [cm], as level 1 hierarchical block HB1 on Figure 38(a). By cascading, say, 30 level 1 blocks: HB1/1, HB1/2,…, and HB1/30, we produce a level 2 hierarchical block HB2 on Figure 38(b), which represents a two-wire line with length 90 [cm]. By cascading 5 level 2 blocks: HB2/1, HB2/2,…, and HB2/5, we make a level 3 hierarchical block HB3 on Figure 38(c), which represents a two-wire line with length 450 [cm], and so on. Hierarchical blocks of arbitrary length may be considered as independent entities or sophisticated parts in PSPICE.

From the data associated with functions depicted in Figures 12 and 13 we can easily: (i) obtain 𝑍0(𝑗⋅2πœ‹β‹…π‘“0)=294.67280βˆ’π‘—β‹…0.42017 [Ξ©] and (ii) notice that variations of |𝑍0(𝑗⋅2πœ‹β‹…π‘“)|] and Arg[𝑍0(𝑗⋅2πœ‹β‹…π‘“)] are very small in the frequency range (𝑓0βˆ’π΅/2,𝑓0+𝐡/2).

Now, suppose that the block HB2/5 in Figure 38(c) is terminated with impedance, 𝑍𝐿(𝑗⋅2πœ‹β‹…π‘“0)=𝑅𝐿+1/(𝑗⋅2πœ‹β‹…π‘“0⋅𝐢𝐿)=𝑍0(𝑗⋅2πœ‹β‹…π‘“0) and find 𝑅𝐿=294.6728 [Ξ©] and 𝐢𝐿=378.7781 [pF]. From (A.17) it follows that 𝑀(𝑗⋅2πœ‹β‹…π‘“0,π‘₯)=𝑁(𝑗⋅2πœ‹β‹…π‘“0,π‘₯)=exp[βˆ’π‘₯β‹…Ξ“(𝑗⋅2πœ‹β‹…π‘“0)] = exp[βˆ’π‘₯β‹…π‘Ž(𝑓0)]β‹…{cos[π‘₯⋅𝑏(𝑓0)]βˆ’π‘—β‹…sin[π‘₯⋅𝑏(𝑓0)]}, and then at any place π‘₯ on the line we obtain the exact values of signal amplitude πΈπ‘šβ‹…exp[βˆ’π‘₯β‹…π‘Ž(𝑓0)] [V], phase delay πœ‘(π‘₯)=π‘₯⋅𝑏(𝑓0) [rad] and time delay 𝜏(π‘₯)=π‘₯⋅𝑏(𝑓0)/(2πœ‹β‹…π‘“0) [s]. In Figure 20 we see that function 𝑏(𝑓) is practically linear in 𝑓, so that 𝜏(π‘₯) should be linear in π‘₯, too. To verify the ladder model of two-wire line with length β„“=4.5 [m] (Figure 38(c)), we will compare the exact values of πΈπ‘šβ‹…exp[βˆ’π‘₯β‹…π‘Ž(𝑓0)], πœ‘(π‘₯) and 𝜏(π‘₯) at the points on line π‘₯=π‘₯π‘˜=π‘˜β‹…β„“0/2  (π‘˜=1,3000) (β„“0=3 [mm]), with values obtained by PSPICE simulation. Bearing in mind the topological uniformity of the considered ladder, it is felt that for estimation of the proposed model it will suffice to check the ladder response only at the selected set of points whose voltages are 𝑒𝑖(𝑖=1,5) with respect to the common node 0 (i.e., ground) (Figure 38(c)). The distances of these five points from the line sending end are π‘₯600⋅𝑖=300⋅𝑖⋅ℓ0=90⋅𝑖 [cm] (𝑖=1,5), respectively. For these voltages in Table 3 are given the steady-state results of both the simulation and the exact analysis, where the following notation has been used (Figures 19, 20, and 38(c)):πΈπ‘š[V]=10,𝑓0[]𝑓=1GHz,π‘Ž01=0.044990161m𝑓,𝑏01=31.551675282mξ‚„,𝑒=πΈπ‘šξ€·β‹…sin2πœ‹β‹…π‘“0⋅𝑑,𝑒𝑖=π‘ˆπ‘–π‘šξ€·β‹…sin2πœ‹β‹…π‘“0β‹…π‘‘βˆ’πœ‘π‘–ξ€Έ=π‘ˆπ‘–π‘šξ€Ίβ‹…sin2πœ‹β‹…π‘“0β‹…ξ€·π‘‘βˆ’πœπ‘–,π‘ˆξ€Έξ€»π‘–π‘š=πΈπ‘šξ€Ίβ‹…expβˆ’π‘₯600β‹…π‘–ξ€·π‘“β‹…π‘Ž0ξ€Έξ€»=10β‹…(0.960317668)𝑖[𝑉],πœ‘π‘–ξ€·π‘₯=πœ‘600⋅𝑖=300⋅𝑖⋅ℓ0𝑓⋅𝑏0ξ€Έ[],𝜏=28.39650775⋅𝑖rad𝑖π‘₯=𝜏600⋅𝑖=πœ‘π‘–2πœ‹β‹…π‘“0[],ξ‚€=4.519444575⋅𝑖ns𝑖=.1,5(3.1)

From Table 3 it is evident the good agreement between the simulation results and those obtained by exact analysis. The selection of less segmentation step β„“0 will improve this agreement at the expense of rising the complexity of RLCG network, as a consequence of proliferation in number of network elements.

In Figure 39 the results of transient PSPICE analysis of RLCG ladder with zero initial conditions (Figure 38(c)) representing the approximate network model of two-wire line with β„“=4.5 [m] are depicted.

Now we can summarize our obtained results(i) A transmission line is physically dispersive system with respect to frequency, having the infinite number of poles and zeros and complex transient dynamics, which cannot be represented perfectly with common-ground ladder with possibly great, but finite number of RLCG elements.(ii)Delayed and slightly attenuated signals 𝑒1÷𝑒5 with frequency 𝑓0 and smooth transient intervals (Figure 39) are produced by uniform RLCG ladder terminated with characteristic impedance (The uniform ladder in Figure 38(c) consists of 1500 identical cells with impedances 𝑍1(𝑗⋅2πœ‹β‹…π‘“0)=𝑅/20+𝑗⋅2πœ‹β‹…π‘“0⋅𝐿/20 and 𝑍2(𝑗⋅2πœ‹β‹…π‘“0)=[π‘Œ2(2πœ‹β‹…π‘“0)]βˆ’1, where π‘Œ2(2πœ‹β‹…π‘“0) = 𝐺/10+𝑗⋅2πœ‹β‹…π‘“0⋅𝐢/10 (see Figure 37 and Table 1). At frequency 𝑓0 the characteristic impedance [8] of ladder is 𝑍𝑐(𝑗⋅2πœ‹β‹…π‘“) = {𝑍1(𝑗⋅2πœ‹β‹…π‘“0)β‹…[𝑍1(𝑗⋅2πœ‹β‹…π‘“0)+2⋅𝑍2(𝑗⋅2πœ‹β‹…π‘“0)]}1/2β‰ˆπ‘0(𝑗·2πœ‹Β·π‘“0) (it is close to the characteristic impedance of transmission line). Then, it can be shown that: (i) for 𝑛=1,1500, the complex voltage at the end of the 𝑛th cell is β‰ˆ exp{βˆ’π‘›β‹…acosh[1+𝑍1(𝑗⋅2πœ‹β‹…π‘“0)/𝑍2(𝑗⋅2πœ‹β‹…π‘“0)]}⋅𝐸(𝑗⋅2πœ‹β‹…π‘“0)[𝐸(𝑗⋅2πœ‹β‹…π‘“0) is the complex representative of 𝑒(𝑑)], and (ii) the time-delay at that place with respect to excitation is, Im{𝑛⋅acosh[1+𝑍1(𝑗⋅2πœ‹β‹…π‘“0)/𝑍2(𝑗⋅2πœ‹β‹…π‘“0)]/(2πœ‹β‹…π‘“0)}β‰ˆ15.07⋅𝑛 [ps].) of the line at frequency 𝑓0 (Figure 38(c)) and not by real two-wire line. As will be seen, the transient response of real two-wire line, even with the same initial conditions and termination, is more complex.(iii)A deeper insight into transient phenomena in real lines can be acquired, either by applying the numeric inverse Laplace transform of (A.17) with restricted number of poles/zeros or by numerical solving of linear, second-order, hyperbolic partial differential equations (2.19), telegraph equations, with specified initial and boundary conditions depending on line termination and excitation voltages in consecutive time intervals determined according to the line length. The method of lines seems to be the most appropriate for solving of hyperbolic and parabolic partial differential equations [11].(iv)The PSPICE simulation method is applied herein only to facilitate the approximate steady-state analysis of two-wire lines with arbitrary loads and limited frequency-band signals, by using RLCG ladders as approximate network models of these lines, instead of resorting to numerical solving of partial differential equations or application of complex analytic methods.

To illustrate the complexity of transient phenomena in transmission lines let we consider two-wire line with length β„“=4.5 [m] and excitation 𝑒(𝑑) as in Figure 38(c) [see, also, (3.1)], terminated with its characteristic impedance at frequency 𝑓0. At the moment of appearing of excitation at 𝑑=0, the line did not have any initial energy. Let us determine the solution 𝑒(𝑑,π‘₯) of the telegraph equation (2.19) in the interval π‘‘βˆˆ[0,𝑇], where 𝑇=β„“/[2πœ‹β‹…π‘“0/𝑏(𝑓0)]β‰ˆ22.5972 [ns] is the perturbation propagation time from the line sending end to its receiving end, and 2πœ‹β‹…π‘“0/𝑏(𝑓0)β‰ˆπ‘0/(πœ€π‘Ÿ)1/2β‰ˆ1.9913β‹…108 [m/s] is the propagation velocity. If we introduce substitution 𝑑=𝜏/𝐴(𝑓0){𝐴(𝑓0)=1/[πΏξ…ž(𝑓0)β‹…πΆξ…ž]1/2 = 1.9913β‹…108[m/s]} into the telegraph equation in 𝑒(𝑑,π‘₯) obtained from (2.19): πœ•2𝑒(𝑑,π‘₯)πœ•π‘₯2=πΏξ…žξ€·π‘“0ξ€Έβ‹…πΆξ…žβ‹…πœ•2𝑒(𝑑,π‘₯)πœ•π‘‘2+ξ€ΊπΏξ…žξ€·π‘“0ξ€Έβ‹…πΊξ…ž+πΆξ…žβ‹…π‘…ξ…žξ€·π‘“0β‹…ξ€Έξ€»πœ•π‘’(𝑑,π‘₯)πœ•π‘‘+π‘…ξ…žξ€·π‘“0ξ€Έβ‹…πΊξ…žβ‹…π‘’(𝑑,π‘₯),(3.2) we obtain the second-order, hyperbolic, partial differential equation (PDE) equivalent to (3.2): πœ•2𝑒(𝜏,π‘₯)πœ•π‘₯2=πœ•2𝑒(𝜏,π‘₯)πœ•πœ2𝑓+𝐢0ξ€Έβ‹…πœ•π‘’(𝜏,π‘₯)ξ€·π‘“πœ•πœ+𝐡0ξ€Έβ‹…ξƒ¬πœπ‘’(𝜏,π‘₯),𝑒(𝑑,π‘₯)=𝑒𝐴𝑓0ξ€Έξƒ­=,π‘₯[],𝐴𝑓𝑒(𝜏,π‘₯),π‘₯∈0,β„“0ξ€Έ=1𝑓𝐿′0m⋅𝐢′s𝑓,𝐡0𝑓=𝑅′01⋅𝐺′m2ξ‚„,𝐢𝑓0𝑓=𝑅′0ξ€Έβ‹…ξƒŽπΆβ€²ξ€·π‘“πΏβ€²0ξ€ΈξƒŽ+𝐺′⋅𝑓𝐿′0ξ€ΈπΆξ…žξ‚ƒ1mξ‚„,(3.3) where 𝜏∈[0,𝐴(𝑓0)⋅𝑇] [m], that is, 𝜏∈[0,4.5] [m]. If 𝑒(𝜏,π‘₯)={exp[βˆ’(1/2)⋅𝐢(𝑓0)β‹…πœ]}⋅𝑒(𝜏,π‘₯), then from (3.3) the following PDE of Klein-Gordon’s type [12] is obtained {𝜏,π‘₯∈[0,4.5] [m]}: πœ•2𝑒(𝜏,π‘₯)πœ•π‘₯2=πœ•2𝑒(𝜏,π‘₯)πœ•πœ2𝑓+𝐷0⋅𝐷𝑓𝑒(𝜏,π‘₯),0ξ€Έ=14β‹…βŽ›βŽœβŽœβŽπ‘…β€²(𝑓0ξƒŽ)β‹…πΆξ…žπΏξ…žξ€·π‘“0ξ€Έβˆ’πΊξ…žβ‹…ξƒŽπΏξ…ž(𝑓0)πΆξ…žβŽžβŽŸβŽŸβŽ 2=2.0241β‹…10βˆ’31m2ξ‚„,(3.4) which would be a pure wave equation if β€œdiffusion” term 𝐷(𝑓0)⋅𝑒(𝜏,π‘₯) was not present, or in other words, if the line parameters satisfy the Heaviside’s condition of distortionless at frequency 𝑓0.

Let we define, also, the following auxiliary function in 𝜏 and π‘₯: πœ•π‘£(𝜏,π‘₯)=𝑒(𝜏,π‘₯)=1πœ•πœ2𝑓⋅𝐢0ξ€Έ1⋅𝑒(𝑑,π‘₯)+𝐴𝑓0ξ€Έβ‹…πœ•π‘’(𝑑,π‘₯)ξƒ­ξ€ΊπΈξ€·π‘“πœ•π‘‘β‹…exp0ξ€Έξ€»|||||⋅𝑑𝑑=𝜏/𝐴(𝑓0),𝐸𝑓0ξ€Έ=12β‹…ξƒ¬π‘…ξ…žξ€·π‘“0ξ€ΈπΏξ…žξ€·π‘“0ξ€Έ+πΊξ…žπΆξ…žξƒ­[].=8.959MHz(3.5)

If the excitation is 𝑒(𝑑)=πΈπ‘šβ‹…sin(2πœ‹β‹…π‘“0⋅𝑑+πœ‘), then from (3.4) and (3.5) the system of two PDEs is produced to be solved in the interval 𝜏,π‘₯∈[0,4.5] [m], by using of MATHCAD β€œPdesolve” block: πœ•π‘’(𝜏,π‘₯)=πœ•πœπœ•π‘£(𝜏,π‘₯)βˆ§π‘£(𝜏,π‘₯)=πœ•πœ•πœ2𝑒(𝜏,π‘₯)πœ•π‘₯2𝑓+𝐷0⋅𝑒(𝜏,π‘₯)⟡ThesystemofPDEs,β€–β€–β€–β€–β€–βˆ§π‘’(0,π‘₯)=0ifπ‘₯>0𝑒(0)otherwise=‖‖‖‖‖‖1𝑣(0,π‘₯)0ifπ‘₯>02𝑓⋅𝐢0⋅𝑒(0)+2πœ‹β‹…π‘“0β‹…πΈπ‘šβ‹…cos(πœ‘)𝐴𝑓0ξ€Έξƒ­otherwise⟡theinitialconditions,1𝑒(𝜏,0)=exp2𝑓⋅𝐢0ξ€Έξ‚„ξƒ¬πœβ‹…πœβ‹…π‘’π΄ξ€·π‘“0ξ€Έξƒ­βˆ§ξ€Ίξ€·π‘“π‘’(𝜏,β„“)=0⟡theboundaryconditions,𝑒(𝑑,π‘₯)=expβˆ’πΈ0⋅⋅𝑑𝑒𝐴𝑓0ξ€Έξ€»[][m].⋅𝑑,π‘₯⟡Solutionof(3.2)inintervalπ‘‘βˆˆ0,22.59][ns,π‘₯∈0,4.5][(3.6)

In Figure 40 the solutions 𝑒(𝑑,π‘₯π‘˜) of (3.2) in the interval π‘‘βˆˆ[0,𝑇] for π‘₯π‘˜=π‘˜β‹…β„“/5 [m] (π‘˜=1,5) are depicted. Certainly the solutions of (3.2) for any π‘₯∈[0,β„“] can be produced easily, also by using the relations (3.4)–(3.6).

In Figure 41 the pulse responses [i.e., the voltages π‘’π‘˜(π‘˜=1,5)] of the ladder in Figure 38(c) terminated with the characteristic impedance of two-wire line are depicted. The ladder is excited by pulsed emf 𝑒(𝑑) with amplitude 10 [V], frequency 𝑓=10 [MHz], duty-cycle 0.2 and rise and fall times equal 1 [ps]. The voltages π‘’π‘˜(π‘˜=1,5) have overshoots, undershoots, and delay times close to those of the network in Figure 38(c) with continuous excitation of frequency 𝑓0=1 [GHz], in spite of the fact that frequency spectrum of the periodic, pulsed signal 𝑒(𝑑) has components 10β‹…π‘˜ [MHz] (π‘˜βˆˆπ‘) and that energetically significant part of spectrum is concentrated in the frequency range π‘“βˆˆ[0,150] [MHz].

4. Conclusions

In the paper new results are presented in incremental network modelling of Two-wire lines in the frequency range [0,3] [GHz], by uniform RLCG ladders with frequency-dependent RL parameters, which are analyzed by using of the PSPICE. Some important frequency limitations of the proposed approach have been pinpointed, restricting the application of the developed models to the steady-state analysis of RLCG networks processing the limited-frequency-band signals. The basic intention of the approach considered herein is to circumvent solving of telegraph equations and application of the complex, numerically demanding procedures in determining two-wire line responses at selected set of equidistant points. The key to the modelling method applied is partition of the two-wire line in sufficiently short segments having defined maximum length, whereby couple of new polynomial approximations of line transcedental functions is introduced. It is proved that the strict equivalency between the short-line segments and their uniform ladder counterparts does not exist, but if some conditions are met, satisfactory approximations could be produced. This is illustrated by several examples of short and moderately long two-wire lines with different terminations, proving the good agreement between the exactly obtained steady-state results and those obtained by PSPICE simulation of RLCG ladders as the approximate incremental models of two-wire lines.

Appendix

By using of Kirchoff’s voltage and current laws the following equlibrium equations can be written for the uniform transmission line depicted in Figure 2, no matter what its length β„“ or type is: 𝑒𝑑,π‘₯+𝛿π‘₯2ξ‚βˆ’π‘’(𝑑,π‘₯)=βˆ’π›Ώπ‘₯2β‹…ξ‚ΈπΏξ…žβ‹…πœ•π‘–(𝑑,π‘₯)πœ•π‘‘+π‘…ξ…žξ‚Ήξ‚ΈπΆβ‹…π‘–(𝑑,π‘₯),(A.1)𝑖(𝑑,π‘₯+𝛿π‘₯)βˆ’π‘–(𝑑,π‘₯)=βˆ’π›Ώπ‘₯β‹…ξ…žβ‹…πœ•π‘’(𝑑,π‘₯+𝛿π‘₯/2)πœ•π‘‘+πΊξ…žξ‚€β‹…π‘’π‘‘,π‘₯+𝛿π‘₯2,(A.2)𝑒(𝑑,π‘₯+𝛿π‘₯)βˆ’π‘’π‘‘,π‘₯+𝛿π‘₯2=βˆ’π›Ώπ‘₯2β‹…ξ‚ΈπΏξ…žβ‹…πœ•π‘–(𝑑,π‘₯+𝛿π‘₯)πœ•π‘‘+π‘…ξ…žξ‚Ήβ‹…π‘–(𝑑,π‘₯+𝛿π‘₯).(A.3)

If 𝛿π‘₯β†’0, from (A.1)–(A.3) it immediately follows: πœ•π‘’(𝑑,π‘₯)πœ•π‘₯=βˆ’πΏξ…žβ‹…πœ•π‘–(𝑑,π‘₯)πœ•π‘‘βˆ’π‘…ξ…žβ‹…π‘–(𝑑,π‘₯),πœ•π‘–(𝑑,π‘₯)πœ•π‘₯=βˆ’πΆξ…žβ‹…πœ•π‘’(𝑑,π‘₯)πœ•π‘‘βˆ’πΊξ…žβ‹…π‘’(𝑑,π‘₯).(A.4)

If 𝑠 is the complex frequency, let we suppose that the following conditions hold.(a) Both 𝑒(𝑑,π‘₯) and 𝑖(𝑑,π‘₯) possess Laplace transform with respect to time, []=ξ€œπ‘ˆ(𝑠,π‘₯)=ℓ𝑒(𝑑,π‘₯)∞0βˆ’π‘’(𝑑,π‘₯)β‹…π‘’βˆ’π‘ β‹…π‘‘[]=ξ€œβ‹…d𝑑,𝐼(𝑠,π‘₯)=𝑖(𝑑,π‘₯)∞0βˆ’π‘–(𝑑,π‘₯)β‹…π‘’βˆ’π‘ β‹…π‘‘β‹…d𝑑.(A.5) (b)Both 𝑒(𝑑,π‘₯) and 𝑖(𝑑,π‘₯) have continuous derivatives with respect to π‘₯.(c)The following two integrals are uniformly convergent with respect to π‘₯: ξ€œβˆž0βˆ’πœ•π‘’(𝑑,π‘₯)πœ•π‘₯β‹…π‘’βˆ’π‘ β‹…π‘‘ξ€œβ‹…d𝑑,∞0βˆ’πœ•π‘–(𝑑,π‘₯)πœ•π‘₯β‹…π‘’βˆ’π‘ β‹…π‘‘β‹…d𝑑.(A.6) (d) The initial conditions 𝑒(0,π‘₯) and 𝑖(0,π‘₯) are assumed for convenience to be zero for all π‘₯.

Taking into account all conditions (a) Γ· (d) and (A.1)–(A.6), it follows: β„“ξ‚Έπœ•π‘’(𝑑,π‘₯)ξ‚Ή=ξ€œπœ•π‘₯∞0βˆ’πœ•π‘’(𝑑,π‘₯)πœ•π‘₯β‹…π‘’βˆ’π‘ β‹…π‘‘πœ•β‹…d𝑑=ξ€œπœ•π‘₯∞0βˆ’π‘’(𝑑,π‘₯)β‹…π‘’βˆ’π‘ β‹…π‘‘β‹…d𝑑=πœ•π‘ˆ(𝑠,π‘₯)β„“ξ‚Έπœ•π‘₯,(A.7)πœ•π‘–(𝑑,π‘₯)ξ‚Ή=ξ€œπœ•π‘₯∞0βˆ’πœ•π‘–(𝑑,π‘₯)πœ•π‘₯β‹…π‘’βˆ’π‘ β‹…π‘‘πœ•β‹…d𝑑=ξ€œπœ•π‘₯∞0βˆ’π‘–(𝑑,π‘₯)β‹…π‘’βˆ’π‘ β‹…π‘‘β‹…d𝑑=πœ•πΌ(𝑠,π‘₯)πœ•π‘₯,(A.8)πœ•π‘ˆ(𝑠,π‘₯)πœ•π‘₯=βˆ’(𝑅′+𝐿′⋅𝑠)⋅𝐼(𝑠,π‘₯),πœ•πΌ(𝑠,π‘₯)πœ•π‘₯=βˆ’(𝐺′+𝐢′⋅𝑠)β‹…π‘ˆ(𝑠,π‘₯),(A.9) wherefrom the equations describing voltage and current distribution in uniform line are readily produced, regardless to its length β„“ and/or terminal conditions (i.e., the generator and load impedances): πœ•2π‘ˆ(𝑠,π‘₯)πœ•π‘₯2+Ξ“2πœ•(𝑠)β‹…π‘ˆ(𝑠,π‘₯)=0,2𝐼(𝑠,π‘₯)πœ•π‘₯2+Ξ“2(𝑠)⋅𝐼(𝑠,π‘₯)=0,(A.10) where βˆšΞ“(𝜎)=(π‘…ξ…ž+πΏξ…žβ‹…π‘ )/(πΊξ…ž+πΆξ…žβ‹…π‘ ) is propagation function of the line. The important parameter of any line is, also, its generalized characteristic impedance 𝑍0√(𝑠)=(π‘…ξ…ž+πΏξ…žβ‹…π‘ )/(πΊξ…ž+πΆξ…žβ‹…π‘ ). The line is distortionless if π‘…ξ…ž/πΏξ…ž=πΊξ…ž/πΆξ…ž [7], and it is lossless when π‘…ξ…ž=0 [Ξ©/m] and πΊξ…ž=0 [S/m]. The general solution to the set of linear, homogeneous differential equations (A.10) reads π‘ˆ(𝑠,π‘₯)=𝐴1β‹…cosh(Ξ“β‹…π‘₯)+𝐴2β‹…sinh(Ξ“β‹…π‘₯),𝐼(𝑠,π‘₯)=𝐡1β‹…cosh(Ξ“β‹…π‘₯)+𝐡2β‹…sinh(Ξ“β‹…π‘₯),(A.11) where the terms 𝐴1, 𝐴2, 𝐡1, and 𝐡2 are not the functions of π‘₯ and are determined from the boundary conditions. From (A.11) for π‘₯=0 we obtain, 𝐴1=π‘ˆ(𝑠,0) and 𝐡1=𝐼(𝑠,0) and from (A.9) and (A.11); after differentiation in π‘₯; it follows, 𝐴2=βˆ’π‘0(𝑠)⋅𝐼(𝑠,0) and 𝐡2=βˆ’π‘ˆ(𝑠,0)/𝑍0(𝑠). Then (A.11) takes on the following form: π‘ˆ(𝑠,π‘₯)=π‘ˆ(𝑠,0)β‹…cosh(Ξ“β‹…π‘₯)βˆ’π‘0ξ‚Έ(𝑠)⋅𝐼(𝑠,0)β‹…sinh(Ξ“β‹…π‘₯),(A.12)𝐼(𝑠,π‘₯)=𝐼(𝑠,0)β‹…cosh(Ξ“β‹…π‘₯)βˆ’π‘ˆ(𝑠,0)𝑍0ξ‚Ή(𝑠)β‹…sinh(Ξ“β‹…π‘₯).(A.13)

Since for π‘₯=β„“ it holds: π‘ˆ(𝑠,β„“)=π‘ˆ(𝑠,0)β‹…cosh(Ξ“β‹…β„“)βˆ’π‘0ξ‚Έ(𝑠)⋅𝐼(𝑠,0)β‹…sinh(Ξ“β‹…β„“),𝐼(𝑠,β„“)=𝐼(𝑠,0)β‹…cosh(Ξ“β‹…β„“)βˆ’π‘ˆ(𝑠,0)𝑍0ξ‚Ή(𝑠)β‹…sinh(Ξ“β‹…β„“),(A.14)

then from (A.14) we obtain, π‘ˆ(𝑠,0)=π‘ˆ(𝑠,β„“)β‹…cosh(Ξ“β‹…β„“)+𝑍0ξ‚Έ(𝑠)⋅𝐼(𝑠,β„“)β‹…sinh(Ξ“β‹…β„“),(A.15)𝐼(𝑠,0)=𝐼(𝑠,β„“)β‹…cosh(Ξ“β‹…β„“)+π‘ˆ(𝑠,β„“)𝑍0ξ‚Ή(𝑠)β‹…sinh(Ξ“β‹…β„“).(A.16)

If 𝑍𝐿(𝑠) is the load impedance (termination) of the uniform, finite length line, then from (A.12)–(A.14) we finally produce voltage- and current-transmittances 𝑀(𝑠,π‘₯) and 𝑁(𝑠,π‘₯), respectively, 𝑀(𝑠,π‘₯)=π‘ˆ(𝑠,π‘₯)=π‘π‘ˆ(𝑠,0)𝐿[](𝑠)β‹…coshΞ“β‹…(β„“βˆ’π‘₯)+𝑍0[](𝑠)β‹…sinhΞ“β‹…(β„“βˆ’π‘₯)𝑍𝐿(𝑠)β‹…cosh(Ξ“β‹…β„“)+𝑍0,(𝑠)β‹…sinh(Ξ“β‹…β„“)𝑁(𝑠,π‘₯)=𝐼(𝑠,π‘₯)=𝑍𝐼(𝑠,0)𝐿[](𝑠)β‹…sinhΞ“β‹…(β„“βˆ’π‘₯)+𝑍0[](𝑠)β‹…coshΞ“β‹…(β„“βˆ’π‘₯)𝑍𝐿(𝑠)β‹…sinh(Ξ“β‹…β„“)+𝑍0.(𝑠)β‹…cosh(Ξ“β‹…β„“)(A.17)

Since π‘ˆ(𝑠,β„“)=𝑍𝐿(𝑠)⋅𝐼(𝑠,β„“), then from (A.12)–(A.14) it follows, 𝑍(𝑠,0)=π‘ˆ(𝑠,0)=𝑍𝐼(𝑠,0)𝐿(𝑠)β‹…cosh(Ξ“β‹…β„“)+𝑍0(𝑠)β‹…sinh(Ξ“β‹…β„“)𝑍𝐿(𝑠)β‹…sinh(Ξ“β‹…β„“)+𝑍0(𝑠)β‹…cosh(Ξ“β‹…β„“)⋅𝑍0(𝑠),andgenerally,𝑍(𝑠,π‘₯)=π‘ˆ(𝑠,π‘₯)=𝑍𝐼(𝑠,π‘₯)𝐿[](𝑠)β‹…coshΞ“β‹…(β„“βˆ’π‘₯)+𝑍0[](𝑠)β‹…sinhΞ“β‹…(β„“βˆ’π‘₯)𝑍𝐿[](𝑠)β‹…sinhΞ“β‹…(β„“βˆ’π‘₯)+𝑍0[](𝑠)β‹…coshΞ“β‹…(β„“βˆ’π‘₯)⋅𝑍0([],𝑠),π‘₯∈0,β„“(A.18) where 𝑍(𝑠,0) is the input impedance of line and 𝑍(𝑠,π‘₯) is the impedance at place π‘₯ seen towards the line end. From (A.17) and (A.18) we see that analysis of transmission line is equivalent to analysis of its segments terminated with impedances given with (A.18). The characteristic impedance and the propagation function of a distortionless line are 𝑍0(𝑠)=(πΏξ…ž/πΆξ…ž)1/2 and Ξ“(𝑠)=(π‘…ξ…žβ‹…πΊξ…ž)1/2+𝑠⋅(πΏξ…žβ‹…πΆξ…ž)1/2, respectively. And further if the line load impedance is 𝑍𝐿(𝑠)=𝑍0(𝑠), then for all π‘₯∈[0,β„“] it holds: 𝑍(𝑠,π‘₯)=𝑍0(𝑠)=(πΏξ…žβ‹…πΆξ…ž)1/2 and 𝑀(𝑠,π‘₯)=𝑁(𝑠,π‘₯)=exp[βˆ’Ξ“(𝑠)β‹…π‘₯)]=exp(βˆ’π‘…ξ…žβ‹…πΊξ…žβ‹…π‘₯)β‹…exp[βˆ’π‘₯β‹…(πΏξ…žβ‹…πΆξ…ž)1/2⋅𝑠]. When the line parameters are constant, we will have 𝑒(𝑑,π‘₯)=β„’βˆ’1[π‘ˆ(𝑠,π‘₯)] = β„’βˆ’1[𝑀(𝑠,π‘₯)β‹…π‘ˆ(𝑠,0)]=β„’βˆ’1{exp(βˆ’π‘…ξ…žβ‹…πΊξ…žβ‹…π‘₯)β‹…exp[βˆ’π‘₯β‹…(πΏξ…žβ‹…πΆξ…ž)1/2⋅𝑠]β‹…π‘ˆ(𝑠,0)}=exp(βˆ’π‘…ξ…žβ‹…πΊξ…žβ‹…π‘₯)⋅𝑒[π‘‘βˆ’π‘₯β‹…(πΏξ…žβ‹…πΆξ…ž)1/2,0] and, also, 𝑖(𝑑,π‘₯)=β„’βˆ’1[𝐼(𝑠,π‘₯)]=β„’βˆ’1[𝑁(𝑠,π‘₯)⋅𝐼(𝑠,0)]=β„’βˆ’1{exp(βˆ’π‘…ξ…žβ‹…πΊξ…žβ‹…π‘₯)β‹…exp[βˆ’π‘₯β‹…(πΏξ…žβ‹…πΆξ…ž)1/2⋅𝑠]⋅𝐼(𝑠,0)}=exp(βˆ’π‘…ξ…žβ‹…πΊξ…žβ‹…π‘₯) · 𝑖[π‘‘βˆ’π‘₯β‹…(πΏξ…žβ‹…πΆξ…ž)1/2], that is, voltage 𝑒(𝑑,π‘₯) and current 𝑖(𝑑,π‘₯) at place π‘₯ on distortionless line with constant parameters and load 𝑍𝐿(𝑠)=(πΏξ…ž/πΆξ…ž)1/2 are as those on the line sending end, except for the time delay 𝜏=π‘₯β‹…(πΏξ…žβ‹…πΆξ…ž)1/2 and the attenuation exp(π‘…ξ…žβ‹…πΊξ…žβ‹…π‘₯). By using of lossless, constant parameter line with resistive load (πΏξ…ž/πΆξ…ž)1/2, it cannot be produced realistically even a relatively small signal delay. For example, pulse delay 𝜏=5 [ms] can be obtained from a lossless, constant parameter line with parameters πΏξ…ž=1.5 [ΞΌH/m], πΆξ…ž=18 [pF/m], and the load resistance (πΏξ…ž/πΆξ…ž)1/2√=500/3 [Ξ©] at distance π‘₯=πœβ‹…(πΏξ…žβ‹…πΆξ…ž)βˆ’1/2β‰ˆ962.25 [km] from the line sending end. But, if lossy, distortionless line is terminated with its characteristic impedance 𝑍0(𝑠)=(πΏξ…ž/πΆξ…ž)1/2, the attenuation factor exp[π‘₯β‹…(π‘…ξ…žβ‹…πΊξ…ž)1/2] must, also, be taken into account.

Acknowledgment

This work is supported in part by the Serbian Ministry of Science and Technological Development through Projects TR 32048 and III 41006.