Abstract

The robust reliable ๐ปโˆž control problem for a class of nonlinear stochastic Markovian jump systems (NSMJSs) is investigated. The system under consideration includes Itรด-type stochastic disturbance, Markovian jumps, as well as sector-bounded nonlinearities and norm-bounded stochastic nonlinearities. Our aim is to design a controller such that, for possible actuator failures, the closed-loop stochastic Markovian jump system is exponential mean-square stable with convergence rate ๐›ผ and disturbance attenuation ๐›พ. Based on the Lyapunov stability theory and Itรด differential rule, together with LMIs techniques, a sufficient condition for stochastic systems is first established in Lemma 3. Then, using the lemma, the sufficient conditions of the solvability of the robust reliable ๐ปโˆž controller for linear SMJSs and NSMJSs are given. Finally, a numerical example is exploited to show the usefulness of the derived results.

1. Introduction

In the past few decades, Markovian jump systems (MJSs) have been considerably studied since this kind of hybrid systems consists of a number of subsystems and a switch signal, which includes applications in safety-critical and high-integrity systems (e.g., aircraft, chemical plants, nuclear power station, robotic manipulator systems, large-scale flexible structures for space stations such as antenna, and solar arrays) typically systems, which may experience abrupt changes in their structure, see, for example, [1] and the references therein. And now, some results of stability and stabilization for Itรด type stochastic Markovian jump systems are also available in many papers, see, for example, [2โ€“4] and the references therein.

The analysis and synthesis problems of Markovian jump systems (MJSs) or stochastic Markovian jump systems (SMJSs) have attracted plenty of attention from many researchers. Many important and remarkable achievements reasonable have obtained. If the control systems possess integrity against actuator and sensor failures, we called reliable control systems or fault-tolerant control systems [5]. Recently, the robust reliable control and filtering problems for time-delay systems or Markovian jump systems (MJSs) have attracted considerable attention, and several approaches have been developed, see, for example, [6โ€“11] and the references therein. Via linear matrix inequalities (LMIs), the authors designed the robust reliable ๐ปโˆž controller for uncertain nonlinear systems [6]. In [7], for admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, Zhang et al. studied the reliable dissipative control of Markovian jump impulsive systems. The reliable ๐ปโˆž control problem for discrete-time piecewise linear systems with infinite distributed delays have been investigated in [8]. Recently, the study of stochastic ๐ปโˆž filtering for the systems governed by stochastic Itรด-type equations has attracted a great deal of attention, and Zhang and Chen [9] firstly solved the nonlinear stochastic delay-free ๐ปโˆž filtering problem by means of a stochastic bounded real lemma derived in [10]. The reliable ๐ปโˆž filtering problems for discrete time-delay systems with randomly occurred nonlinearities [11] and discrete time-delay Markovian jump systems with partly unknown transition probabilities [12] also has been studied, respectively. The reliable control problem for a class of Markovian jump systems with interval time-varying delays and stochastic failure is studied in [13]. In recent years, the research begins to focusing on robust reliable control problems for stochastic systems or stochastic switched nonlinear systems, see, for example, [14โ€“16] and the references therein.

However, all the aforementioned results are mainly focusing on the reliable control and filtering problems of discrete-time-delay systems and Markovian jump systems. Up to now, to the best of the authorsโ€™ knowledge, the robust reliable ๐ปโˆž control problem for nonlinear stochastic Markovian jump systems (NSMJSs) has not been fully investigated, which is an open problem and gives the motivation of our present investigation. In this paper, our aim is to design a robust reliable ๐ปโˆž controller for NSMJSs, such that the NSMJSs are globally mean exponential stable with convergence rate ๐›ผand disturbance attenuation ๐›พ.

1.1. Notations

Throughout this paper, for symmetric matrices ๐‘‹ and ๐‘Œ, the notation ๐‘‹โ‰ฅ๐‘Œ (resp., ๐‘‹>๐‘Œ) means that the Matrix ๐‘‹-๐‘Œ is positive semidefinite (respectively, positive definite). ๐ผis an identity matrix with appropriate dimensions; the subscript โ€œ๐‘‡โ€ represents the Transposition. ๐ธ(โ‹…)denotes the expectation operator with respect to some probability measure ๐‘ƒ. โ„’2[0,โˆž) is the space of square integrable vector functions over [0,โˆž); let (ฮฉ,โ„ฑ,๐‘ƒ) be a complete probability space which is relative to an increasing family (โ„ฑ๐‘ก)๐‘ก>0 of ๐œŽ algebras (โ„ฑ๐‘ก)๐‘ก>0โŠ‚โ„ฑ, where ฮฉ is the samples space, โ„ฑ is ๐œŽ algebra of subsets of the sample space, and ๐‘ƒ is the probability measure on โ„ฑ.โ€–โ‹…โ€–๐ธ2=โ€–๐ธ(โ‹…)โ€–2, while โ€–โ‹…โ€–2 stands for the usual โ„’2[0,โˆž) norm, ๐‘…๐‘› and ๐‘…๐‘›ร—๐‘š denote the ๐‘› dimensional Euclidean space and the set of all ๐‘›ร—๐‘š real matrices, respectively. In this paper, we provide all spaces ๐•‚๐‘˜,๐‘˜โ‰ฅ1 with the usual inner product โŸจโ‹…,โ‹…โŸฉ and its corresponding 2-normโ€–โ‹…โ€–. Let ๐ฟ2(ฮฉ,๐•‚๐‘˜) denote the space of square-integrable ๐•‚๐‘˜-valued functions on the probability space (ฮฉ,โ„ฑ,๐‘ƒ). For any 0<๐‘‡<โˆž, we write [0,๐‘‡] for the closure of the open interval (0,๐‘‡) in ๐‘… and denote by ๐ฟ๐‘›2([0,๐‘‡];๐ฟ2(ฮฉ,๐•‚๐‘˜)) the space of the nonanticipative stochastic processes ๐‘ฆ(โ‹…)=(๐‘ฆ(โ‹…))๐‘กโˆˆ[0,๐‘‡] with respect to (โ„ฑ๐‘ก)๐‘กโˆˆ[0,๐‘‡] satisfying โ€–๐‘ฆ(โ‹…)โ€–2๐ฟ๐‘›2โˆซ=๐ธ(๐‘‡0โ€–๐‘ฆ(๐‘ก)โ€–2dโˆซ๐‘ก)=๐‘‡0๐ธ(โ€–๐‘ฆ(๐‘ก)โ€–2)d๐‘ก<โˆž. ๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘Ÿ(๐‘ก)=๐‘–)=๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–), ๐ด(๐‘Ÿ(๐‘ก)=๐‘–)=๐ด๐‘–๐ต(๐‘Ÿ(๐‘ก)=๐‘–)=๐ต๐‘–, ๐ด0(๐‘Ÿ(๐‘ก)=๐‘–)=๐ด0๐‘–,๐ต0(๐‘Ÿ(๐‘ก)=๐‘–)=๐ต0๐‘–,๐ถ(๐‘Ÿ(๐‘ก)=๐‘–)=๐ถ๐‘–,๐ท(๐‘Ÿ(๐‘ก)=๐‘–)=๐ท๐‘–.

2. Problem Formulation and Failure Model

In this paper, we mainly consider the following nonlinear stochastic Markovian jump systems (NSMJSs) with actuator failures: d๎€บ๐‘ฅ(๐‘ก)=๐ด(๐‘Ÿ(๐‘ก))๐‘ฅ(๐‘ก)+๐ต(๐‘Ÿ(๐‘ก))๐‘ข๐‘“๎€ป(๐‘ก,๐‘Ÿ(๐‘ก))+๐ธ(๐‘Ÿ(๐‘ก))๐‘ฃ(๐‘ก)+๐‘“(๐‘Ÿ(๐‘ก),๐‘ฅ(๐‘ก))d๐‘ก+๎€บ๐ถ(๐‘Ÿ(๐‘ก))๐‘ฅ(๐‘ก)+๐ท(๐‘Ÿ(๐‘ก))๐‘ข๐‘“๎€ป(๐‘ก,๐‘Ÿ(๐‘ก))+๐ป(๐‘Ÿ(๐‘ก))๐‘ฃ(๐‘ก)+๐‘”(๐‘Ÿ(๐‘ก),๐‘ฅ(๐‘ก))d๐‘ค๐‘ฅ๎€ท๐‘ก(๐‘ก),๐‘ง(๐‘ก)=๐ฝ(๐‘Ÿ(๐‘ก))๐‘ฅ(๐‘ก),0๎€ธ=๐‘ฅ0,(2.1) where ๐‘ฅ(๐‘ก)โˆˆ๐‘…๐‘› is the system state, ๐‘ข๐‘“(๐‘ก)โˆˆ๐‘…๐‘™ is the control input of actuator fault, ๐‘ฃ(๐‘ก)โˆˆ๐‘…๐‘ž is the exogenous disturbance input of the systems which belong to โ„’2[0,โˆž), ๐‘ง(๐‘ก)โˆˆ๐‘…๐‘Ÿ is the system control output, ๐‘ค(๐‘ก) is a zero mean real scalar Weiner processes on a probability space (ฮฉ,โ„ฑ,๐‘ƒ) relative to an increase family (โ„ฑ๐‘ก)๐‘ก>0 of ๐œŽ algebras (โ„ฑ๐‘ก)๐‘ก>0โŠ‚โ„ฑ. ๐ด๐‘–,๐ต๐‘–,๐ธ๐‘–,๐ถ๐‘–,๐ท๐‘–,๐น๐‘–,๐ป๐‘–,๐ฝ๐‘– are the known real constant matrices with appropriate dimensions. Morever, we assume that๐ธ(d๎€ท(๐‘ค(๐‘ก))=0,๐ธd๐‘ค(๐‘ก))2๎€ธ=d๐‘ก.(2.2)

Let ๐‘Ÿ(๐‘ก),๐‘กโ‰ฅ0, be a right-continuous Markovian chain on the probability space taking values in a finite state space ๐‘†=1,2,โ€ฆ,๐‘ with generator ฮ“=(๐œ†๐‘–๐‘—)๐‘ร—๐‘ given by ๎‚ป๐œ†๐‘ƒ{๐‘Ÿ(๐‘ก+ฮ”)=๐‘—โˆฃ๐‘Ÿ(๐‘ก)=๐‘–}=๐‘–๐‘—ฮ”+๐‘œ(ฮ”)if๐‘–โ‰ ๐‘—,1+๐œ†๐‘–๐‘–ฮ”+๐‘œ(ฮ”)if๐‘–=๐‘—,(2.3) where ฮ”>0. Here ๐œ†๐‘–๐‘—โ‰ฅ0 is the transition rate from manner ๐‘– to manner ๐‘—, if ๐‘–โ‰ ๐‘— while ๐œ†๐‘–๐‘–โˆ‘=โˆ’๐‘—โ‰ ๐‘–๐œ†๐‘–๐‘—. We assume that the Markovian chain ๐‘Ÿ(โ‹…) is independent of the Wienner process ๐‘ค(โ‹…). It is well known that almost every sample path of ๐‘Ÿ(๐‘ก) is a right-continuous step function with a finite number of simple jump in any finite subinterval of ๐‘…+(โˆถ=[0,+โˆž)).

๐‘“(โ‹…,โ‹…)โˆถ๐‘†ร—๐‘…๐‘›โ†’๐‘…๐‘› is a unknown nonlinear function which describes the system nonlinearity satisfying the following sector-bounded conditions: ๎€ท๐‘“๐‘–(๐‘ฅ(๐‘ก))โˆ’๐‘‡1๐‘–๐‘ฅ๎€ธ๐‘‡๎€ท๐‘“๐‘–(๐‘ฅ(๐‘ก))โˆ’๐‘‡2๐‘–๐‘ฅ๎€ธโ‰ค0,๐‘–โˆˆ๐‘†,(2.4)๐‘”(โ‹…,โ‹…)โˆถ๐‘†ร—๐‘…๐‘›โ†’๐‘…๐‘› also is a unknown nonlinear function which describes the stochastic nonlinearity satisfying the following: ๐‘”๐‘‡๐‘–(๐‘ฅ(๐‘ก))๐‘”๐‘–(๐‘ฅ(๐‘ก))โ‰ค๐‘ฅ๐‘‡๐บ๐‘‡๐‘–๐บ๐‘–๐‘ฅ,๐‘–โˆˆ๐‘†,(2.5) where ๐‘‡1๐‘–,๐‘‡2๐‘–,๐บ๐‘– are known real constant matrices with approximate dimensions.

Remark 2.1. The nonlinearities ๐‘“๐‘–(๐‘ฅ(๐‘ก)) are bounded by sectors, which belong to [๐ฟ1๐‘–,๐ฟ2๐‘–], and are very general that include the usual Lipschitz conditions as a special case which is considerable investigated and includes several other classes well studied nonlinear systems [17โ€“19]. The nonlinearities ๐‘”๐‘–(๐‘ฅ(๐‘ก)) satisfy the norm-bounded conditions.

When the actuator experiences failure, we use ๐‘ข๐‘“(๐‘ก,๐‘Ÿ(๐‘ก)) to describe the control signal form actuators. Consider the following actuator failure model with failure parameter ๐น๐‘–: ๐‘ข๐‘“๐‘–(๐‘ก)=๐น๐‘–๐‘ข๐‘–(๐‘ก),(2.6) where ๐น๐‘– is the actuator fault matrix with ๐น๐‘–๎€ท๐‘“=diag๐‘–1,๐‘“๐‘–2,โ€ฆ,๐‘“๐‘–๐‘š๎€ธ,0โ‰ค๐‘“๐‘–๐‘—โ‰ค๐‘“๐‘–๐‘—โ‰ค๐‘“๐‘–๐‘—,๐‘“๐‘–๐‘—โ‰ฅ1,๐‘—=1,2,โ€ฆ,๐‘š.(2.7)

In which the variables ๐‘“๐‘–๐‘— quantify the failures of the actuators. ๐‘“๐‘–๐‘—=0 means that ๐‘—th actuator completely fails, and ๐‘“๐‘–๐‘—=1 means that the ๐‘—th actuator is normal.

Define the following: ๐น0๐‘–๎€ท๐‘“=diag0๐‘–1,๐‘“0๐‘–2,โ€ฆ,๐‘“0๐‘–๐‘š๎€ธ=๐น๐‘–+๐น๐‘–2,๐‘“0๐‘–๐‘—=๐‘“๐‘–๐‘—+๐‘“๐‘–๐‘—2,(2.8)๎‚๐น0๐‘–๎‚€๎‚๐‘“=diag0๐‘–1,๎‚๐‘“0๐‘–2๎‚๐‘“,โ€ฆ,0๐‘–๐‘š๎‚=๐น๐‘–โˆ’๐น๐‘–2,๐‘“0๐‘–๐‘—=๐‘“๐‘–๐‘—โˆ’๐‘“๐‘–๐‘—2,(2.9) and hence, the matrix ๐น๐‘– can be rewritten as ๐น๐‘–=๐น0๐‘–+ฮ”๐‘–=๐น0๐‘–๎€ท๐œ‘+diag๐‘–1,๐œ‘๐‘–2,โ€ฆ,๐œ‘๐‘–๐‘š๎€ธ,||๐œ‘๐‘–๐‘—||โ‰ค๎‚๐‘“๐‘–๐‘—,๐‘—=1,2,โ€ฆ,๐‘š.(2.10)

In this paper, our aim is to design the controller ๐‘ข๐‘–(๐‘ก)=๐พ๐‘–๐‘ฅ(๐‘ก),๐‘–โˆˆ๐‘†, such that the closed-loop systems satisfy the following conditions:(i)without the exogenous disturbance input (i.e., ๐‘ฃ(๐‘ก)=0), the closed-loop control systems (2.1) are globally exponentially stable with convergence rate ๐›ผ>0;(ii)with zero initial condition (i.e., ๐‘ฅ(๐‘ก0)=0) and nonzero exogenous disturbance input (i.e., ๐‘ฃ(๐‘ก)โ‰ 0), the following inequality holds:โ€–๐‘งโ€–๐ธ2<๐›พโ€–๐‘ฃโ€–2๎‚ตi.e๎€œ.,๐‘‡0๐‘ง๐‘‡(๐‘ก)๐‘ง(๐‘ก)d๐‘กโ‰ค๐›พ2๎€œ๐‘‡0๐‘ฃ๐‘‡(๐‘ก)๐‘ฃ(๐‘ก)d๐‘ก๎‚ถ.(2.11)

If the above two conditions hold, we also called the systems that are exponential mean-square stable with convergence rate ๐›ผ and disturbance attenuation ๐›พ.

3. Main Results

Lemma 3.1 (Schur complement lemma [20]). For a given matrix ๎‚€๐‘†=๐‘†1๐‘†3โˆ—๐‘†2๎‚ with ๐‘†๐‘‡1=๐‘†1,๐‘†๐‘‡2=๐‘†2, the following conditions are equivalent:(1)๐‘†<0,(2)๐‘†2<0,๐‘†1โˆ’๐‘†3๐‘†2โˆ’1๐‘†๐‘‡3<0,(3)๐‘†1<0,๐‘†2โˆ’๐‘†3๐‘†1โˆ’1๐‘†๐‘‡3<0.

Lemma 3.2 (see [21]). Let ๐‘ฅโˆˆโ„๐‘› and ๐‘ฆโˆˆโ„๐‘›. Then, for any positive scalar ๐œ€, we have ๐‘ฅ๐‘‡๐‘ฆ+๐‘ฆ๐‘‡๐‘ฅโ‰ค๐œ€๐‘ฅ๐‘‡๐‘ฅ+๐œ€โˆ’1๐‘ฆ๐‘‡๐‘ฆ.(3.1)

3.1. Robust Reliable ๐ปโˆž for LSMJSs

To obtain our main results, we first consider the following linear stochastic Markovian jump systems (LSMJSs) without control input: d๐‘ฅ๎€บ๐ด(๐‘ก)=๐‘–๐‘ฅ(๐‘ก)+๐ธ๐‘–๐‘ฃ๎€ป(๐‘ก)d๎€บ๐ถ๐‘ก+๐‘–๐‘ฅ(๐‘ก)+๐ป๐‘–๐‘ฃ๎€ป(๐‘ก)d๐‘ค(๐‘ก),๐‘ง(๐‘ก)=๐ฝ๐‘–๐‘ฅ๎€ท๐‘ก๐‘ฅ(๐‘ก),0๎€ธ=๐‘ฅ0.(3.2)

Lemma 3.3. Suppose that ๐‘ƒ(๐‘ก,๐‘Ÿ(๐‘ก))>0 is continuously differentiable, then the systems (3.2) are exponential mean-square stable with convergence rate ๐›ผand disturbance attenuation๐›พ if and only if the following matrix functional inequalities hold: ฮž๐‘–โŽ›โŽœโŽœโŽ๐‘€(๐‘ก)=๐‘–(๐‘ก)+๐ฝ๐‘‡๐‘–๐ฝ๐‘–๐‘ƒ๐‘–๐ธ๐‘–๐ถ๐‘‡๐‘–โˆ—โˆ’๐›พ2๐ผ๐ป๐‘‡๐‘–โˆ—โˆ—โˆ’๐‘ƒ๐‘–โˆ’1โŽžโŽŸโŽŸโŽ (๐‘ก)<0,๐‘–โˆˆ๐‘†,(3.3) where ๐‘€๐‘–(๐‘ก)=๐ด๐‘‡๐‘–๐‘ƒ๐‘–(๐‘ก)+๐‘ƒ๐‘–(๐‘ก)๐ด๐‘–+ฬ‡โˆ‘๐‘ƒ(๐‘ก)+๐‘—โˆˆ๐‘†๐œ†๐‘–๐‘—๐‘ƒ๐‘—(๐‘ก).

Proof. At first, let ๐‘ฃ(๐‘ก)=0, and defining the following Lyapunov function: ๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)=๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘Ÿ(๐‘ก)=๐‘–)=๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ(๐‘ก,๐‘Ÿ(๐‘ก)=๐‘–)๐‘ฅ(๐‘ก)=๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ๐‘–(๐‘ก)๐‘ฅ(๐‘ก).(3.4)
By Itรด formula, we get the following: โ„’๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)=๐‘ฅ๐‘‡๎€ท๐‘€(๐‘ก)๐‘–(๐‘ก)+๐ถ๐‘‡๐‘–๐‘ƒ๐‘–(๐‘ก)๐ถ๐‘–๎€ธ๐‘ฅ(๐‘ก),(3.5) the matrix function inequalities (3.3) imply that โ„’๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)<0, and let ๐‘Ž๐‘–=๐œ†max(โˆ’ฮž๐‘–(๐‘ก)), ๐‘Ž=max๐‘–โˆˆ๐‘†(๐‘Ž๐‘–), where ๐œ†max(โ‹…) means the maximum eigenvalue of matrix (โ‹…), and we have โ„’๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)โ‰คโˆ’๐‘Ž๐‘ฅ๐‘‡(๐‘ก)๐‘ฅ(๐‘ก).(3.6)
Hence ๐‘‘๎€บ๐‘’๐›ผ๐‘ก๐‘‰๎€ป(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)=๐›ผ๐‘’๐›ผ๐‘ก๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)+๐‘’๐›ผ๐‘ก๐‘‘๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)โ‰ค(๐‘๐›ผโˆ’๐‘Ž)๐‘’๐›ผ๐‘ก(โ€–๐‘ฅ๐‘ก)โ€–2+๐‘’๐›ผ๐‘ก2๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ๐‘–(๐‘ก)๐ถ๐‘–๐‘ฅ(๐‘ก)๐‘‘๐‘ค(๐‘ก),(3.7) where ๐‘๐‘–=sup๐‘กโ‰ฅ๐‘ก0{๐œ†max(๐‘ƒ๐‘–(๐‘ก))}, and ๐‘=max๐‘–โˆˆ๐‘†(๐‘๐‘–). Integrating the both sides of above inequality from ๐‘ก0 to ๐‘‡and taking expectation, we obtain that ๐ธ๐‘’๐›ผ๐‘‡๎€บ๎€ท๐‘ฅ๐‘‰(๐‘ฅ(๐‘‡),๐‘‡,๐‘–)โˆ’๐‘‰0,๐‘ก0๎€œ,๐‘–๎€ธ๎€ปโ‰ค(๐‘๐›ผโˆ’๐‘Ž)๐ธ๐‘‡๐‘ก0๐‘’๐›ผ๐‘ โ€–๐‘ฅ(๐‘ )โ€–2d๐‘ .(3.8)
Set ๐›ผ=๐‘Ž/๐‘, and the following inequality is obtained: ๐‘’๐›ผ๐‘‡min๐‘–โˆˆ๐‘†๐œ†min๎€ท๐‘ƒ๐‘–๎€ธโ€–(๐‘‡)๐ธโ€–๐‘ฅ(๐‘‡)2๎€บ๐‘’โ‰ค๐ธ๐›ผ๐‘‡๐‘‰๎€ป๎€ท๐‘ฅ(๐‘ฅ(๐‘‡),๐‘‡,๐‘–)โ‰ค๐ธ๐‘‰0,๐‘ก0๎€ธ,,๐‘–(3.9) which implies that ๐ธโ€–โ€–๐‘ฅ(๐‘‡)2๎€ท๐‘ฅโ‰ค๐ธ๐‘‰0,๐‘ก0๎€ธ1,๐‘–min๐‘–โˆˆ๐‘†๐œ†min๎€ท๐‘ƒ๐‘–๎€ธ๐‘’(๐‘‡)โˆ’๐›ผ๐‘‡.(3.10)
That is to say that the stochastic systems are globally exponentially stable with convergence rate ๐›ผ>0.
Then, considering the stochastic ๐ปโˆž performance level for the resulting systems (3.2) with nonzero exogenous disturbance input (๐‘ฃ(๐‘ก)โ‰ 0), for any๐‘ก>0, we define that ๎‚ป๎€œ๐ฝ(๐‘ก)=๐ธ๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )d๐‘ ๎‚ผ.(3.11)
By general Itรด formula, we get he following: ๎‚ป๎€œ๐ฝ(๐‘ก)=๐ธ๐‘ก๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )+โ„’๐‘‰(๐‘ฅ(๐‘ ),๐‘ ,๐‘–)d๐‘ ๎‚ผ๎‚ป๎€œโˆ’๐ธ(๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–))โ‰ค๐ธ๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )+โ„’๐‘‰(๐‘ฅ(๐‘ ),๐‘ ,๐‘–)d๐‘ ๎‚ผ๎‚ป๎€œโ‰ค๐ธ๐‘ก0๐œ‚๐‘‡(๐‘ )ฮฉ๐‘–(๐‘ )๐œ‚(๐‘ )d๐‘ ๎‚ผ,(3.12) where ๐œ‚๐‘‡(๐‘ก)=(๐‘ฅ๐‘‡(๐‘ก)๐‘ฃ๐‘‡(๐‘ก)), ฮฉ๐‘–๎‚€(๐‘ก)=๐‘€๐‘–(๐‘ก)+๐ฝ๐‘‡๐‘–๐ฝ๐‘–๐‘ƒ๐‘–(๐‘ก)๐ธ๐‘–๐ธ๐‘‡๐‘–๐‘ƒ๐‘–(๐‘ก)โˆ’๐›พ2๐ผ๎‚+๎‚€๐ถ๐‘‡๐‘–๐ป๐‘‡๐‘–๎‚๐‘ƒ๐‘–๎‚€(๐‘ก)๐ถ๐‘‡๐‘–๐ป๐‘‡๐‘–๎‚๐‘‡ From (3.3) we know that ฮฉ(๐‘ก)<0, which implies that ๐ฝ(๐‘ก)<0.(3.13)
Therefore, the inequality โ€–๐‘งโ€–๐ธ2<๐›พโ€–๐‘ฃโ€–2 holds. The proof is completed.

In the following time, we consider the following linear stochastic Markovian jump systems (LSMJSs) under the state feedback controller: d๐‘ฅ๐ด(๐‘ก)=๎€บ๎€ท๐‘–+๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ธ๐‘–๐‘ฃ๎€ป(๐‘ก)d๐ถ๐‘ก+๎€บ๎€ท๐‘–+๐ท๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ป๐‘–๐‘ฃ๎€ป(๐‘ก)d๐‘ค(๐‘ก),๐‘ง(๐‘ก)=๐ฝ๐‘–๐‘ฅ๎€ท๐‘ก๐‘ฅ(๐‘ก),0๎€ธ=๐‘ฅ0.(3.14)

Theorem 3.4. If there exist the positive matrices ๐‘‹๐‘–>0, and the constant matrices ๐‘Œ๐‘– with approximate dimensions, such that the following LMIs hold ฮ˜๐‘–=โŽ›โŽœโŽœโŽฮ˜๐‘–1๐ธ๐‘–ฮ˜๐‘–2ฮ˜๐‘–3โˆ—โˆ’๐›พ2๐ผ๐ป๐‘‡๐‘–0โˆ—โˆ—โˆ’๐‘‹๐‘–0โˆ—โˆ—โˆ—ฮ˜๐‘–4โŽžโŽŸโŽŸโŽ <0,๐‘–โˆˆ๐‘†,(3.15) where ฮ˜๐‘–1=๐‘‹๐‘–๐ด๐‘‡๐‘–+๐ด๐‘–๐‘‹๐‘–+๐ต๐‘–๐น๐‘–๐‘Œ๐‘–+๐‘Œ๐‘‡๐‘–๐น๐‘‡๐‘–๐ต๐‘‡๐‘–+๐œ†๐‘–๐‘–๐‘‹๐‘–,ฮ˜๐‘–2=๐‘‹๐‘–๐ถ๐‘‡๐‘–+๐‘Œ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–, ฮ˜๐‘–3=๎€ทโˆš๐œ†๐‘–1๐‘‹๐‘–โ‹ฏโˆš๐œ†๐‘–,๐‘–โˆ’1๐‘‹๐‘–โˆš๐œ†๐‘–,๐‘–+1๐‘‹๐‘–โ‹ฏโˆš๐œ†๐‘–๐‘๐‘‹๐‘–๐‘‹๐‘–๐ฝ๐‘‡๐‘–๎€ธ,ฮ˜๐‘–4๎€ท=diagโˆ’๐‘‹1,โ€ฆ,โˆ’๐‘‹๐‘–โˆ’1,โˆ’๐‘‹๐‘–+1,โ€ฆ,โˆ’๐‘‹๐‘๎€ธ,,โˆ’๐ผ(3.16) then the LSMJSs (3.14) are exponential mean-square stable with convergence rate ๐›ผand disturbance attenuation ๐›พ. In this case, the desired controllers are given as follows: ๐พ๐‘–=๐‘Œ๐‘–๐‘‹๐‘–โˆ’1.(3.17)

Proof. Defining the following Lyapunov function: ๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)=๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘Ÿ(๐‘ก)=๐‘–)=๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ๐‘–๐‘ฅ(๐‘ก).(3.18)
By Lemma 3.3, and similar to the proof of Lemma 3.3, we can get the following: โ„’๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)โ‰ค๐œ‚๐‘‡(๐‘ก)ฮž๐‘–๐œ‚(๐‘ก),(3.19) where ฮž๐‘–=๎ƒฉ๐‘€๐‘–๐‘ƒ๐‘–๐ธ๐‘–๐ถ๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–โˆ—โˆ’๐›พ2๐ผ๐ป๐‘‡๐‘–โˆ—โˆ—โˆ’๐‘ƒ๐‘–โˆ’1๎ƒช๐‘€๐‘–=(๐ด๐‘–+๐ต๐‘–๐น๐‘–๐พ๐‘–)๐‘‡๐‘ƒ๐‘–+๐‘ƒ๐‘–(๐ด๐‘–+๐ต๐‘–๐น๐‘–๐พ๐‘–โˆ‘)+๐‘—โˆˆ๐‘†๐œ†๐‘–๐‘—๐‘ƒ๐‘—.
Using Schur complement lemma together with contragredient transformation, we know that LMIs (3.15) imply that ฮž๐‘–<0. So we have ๎‚ป๎€œ๐ฝ(๐‘ก)=๐ธ๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )d๐‘ ๎‚ผ๎‚ป๎€œ=๐ธ๐‘ก๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )+โ„’๐‘‰(๐‘ฅ(๐‘ ),๐‘ ,๐‘–)d๐‘ ๎‚ผ๎‚ป๎€œโˆ’๐ธ(๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–))โ‰ค๐ธ๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )+โ„’๐‘‰(๐‘ฅ(๐‘ ),๐‘ ,๐‘–)d๐‘ ๎‚ผ.<0.(3.20) Therefore, the inequality โ€–๐‘งโ€–๐ธ2<๐›พโ€–๐‘ฃโ€–2 holds. The proof is completed.

Theorem 3.5. If there exist the positive matrices ๐‘‹๐‘–>0, the positive diagonal matrices ๐‘…๐‘–>0, and the constant matrices ๐‘Œ๐‘– with approximate dimensions, such that the following LMIs hold: ๎‚ฮ˜๐‘–=โŽ›โŽœโŽœโŽœโŽœโŽœโŽ๎‚ฮ˜๐‘–1๐ธ๐‘–๎‚ฮ˜๐‘–2ฮ˜๐‘–3๐ต๐‘–๐‘…๐‘–๐‘Œ๐‘‡๐‘–โˆ—โˆ’๐›พ2๐ผ๐ป๐‘‡๐‘–000โˆ—โˆ—โˆ’๐‘‹๐‘–0๐ท๐‘–๐‘…๐‘–0โˆ—โˆ—โˆ—ฮ˜๐‘–400โˆ—โˆ—โˆ—โˆ—โˆ’๐‘…๐‘–0โˆ—โˆ—โˆ—โˆ—โˆ—โˆ’๐‘…๐‘–๎‚๐นโˆ’2๐‘–0โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ <0,๐‘–โˆˆ๐‘†,(3.21) where ๎‚ฮ˜๐‘–1=๐‘‹๐‘–๐ด๐‘‡๐‘–+๐ด๐‘–๐‘‹๐‘–+๐ต๐‘–๐น๐‘–0๐‘Œ๐‘–+๐‘Œ๐‘‡๐‘–๐น๐‘‡๐‘–0๐ต๐‘‡๐‘–+๐œ†๐‘–๐‘–๐‘‹๐‘–, ๎‚ฮ˜๐‘–2=๐‘‹๐‘–๐ถ๐‘‡๐‘–+๐‘Œ๐‘‡๐‘–๐น๐‘‡๐‘–0๐ท๐‘‡๐‘–, Then the LSMJSs (3.14) are exponential mean-square stable with convergence rate ๐›ผ and disturbance attenuation ๐›พ. In this case, the desired controllers are given as follows: ๐พ๐‘–=๐‘Œ๐‘–๐‘‹๐‘–โˆ’1.(3.22)

Proof. Noticing (2.10), we can see that ฮ˜๐‘– in (3.15) can be rewritten as ฮ˜๐‘–=ฮ˜๐‘–0+๎€บ๐ต๐‘‡๐‘–0๐ท๐‘‡๐‘–0๎€ป๐‘‡ฮ”๐‘–๎€บ๐‘Œ๐‘–๎€ป+๎€บ๐‘Œ000๐‘–๎€ป000๐‘‡ฮ”๐‘–๎€บ๐ต๐‘‡๐‘–0๐ท๐‘‡๐‘–0๎€ป,(3.23) where ฮ˜๐‘–0=โŽ›โŽœโŽœโŽ๎‚ฮ˜๐‘–1๐ธ๐‘–๎‚ฮ˜๐‘–2ฮ˜๐‘–3โˆ—โˆ’๐›พ2๐ผ๐ป๐‘‡๐‘–0โˆ—โˆ—โˆ’๐‘‹๐‘–0โˆ—โˆ—โˆ—ฮ˜๐‘–4โŽžโŽŸโŽŸโŽ .
By Lemma 3.2, we have ฮ˜๐‘–โ‰คฮ˜๐‘–0+๎€บ๐ต๐‘‡๐‘–0๐ท๐‘‡๐‘–0๎€ป๐‘‡๐‘…๐‘–๎€บ๐ต๐‘‡๐‘–0๐ท๐‘‡๐‘–0๎€ป+๎€บ๐‘Œ๐‘–๎€ป000๐‘‡๐‘…๐‘–โˆ’1๐น20๐‘–๎€บ๐‘Œ๐‘–๎€ป,000(3.24) by Schur complement, we know that ๎‚ฮ˜๐‘–<0 imply that ฮ˜๐‘–<0. Therefore, we can know from Theorem 3.4 that the LSMJSs (3.14) are stabilizable with convergence rate ๐›ผand disturbance attenuation๐›พ. This completes the proof.

3.2. Robust Reliable ๐ปโˆž for NSMJSs

In this section, we consider the following nonlinear stochastic Markovian jump systems (NSMJSs) under the state feedback controller: d๐‘ฅ๐ด(๐‘ก)=๎€บ๎€ท๐‘–+๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ธ๐‘–๐‘ฃ(๐‘ก)+๐‘“๐‘–๎€ป(๐‘ฅ(๐‘ก))d๐‘ก+๐ถ๎€บ๎€ท๐‘–+๐ท๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ป๐‘–๐‘ฃ(๐‘ก)+๐‘”๐‘–(๎€ป๐‘ฅ(๐‘ก))d๐‘ค(๐‘ก),๐‘ง(๐‘ก)=๐ป๐‘–๐‘ฅ๎€ท๐‘ก๐‘ฅ(๐‘ก),0๎€ธ=๐‘ฅ0.(3.25)

Theorem 3.6. If there exist the positive matrices ๐‘‹๐‘–>0, and the constant matrices ๐‘Œ๐‘– with approximate dimensions, for the positive constant ๐œ€๐‘– and the given scalar ๐œ†๐‘–, such that the following LMIs hold: ฮ˜๐‘–=โŽ›โŽœโŽœโŽœโŽœโŽœโŽฮ˜๐‘–1๐ธ๐‘–๐ผโˆ’๐œ†๐‘–๐‘‹๐‘–๎๐‘‡๐‘–2ฮ˜๐‘‡๐‘–2ฮ˜๐‘‡๐‘–2ฮ˜๐‘–3โˆ—โˆ’๐›พ2๐ผ0๐ป๐‘‡๐‘–๐ป๐‘‡๐‘–0โˆ—โˆ—โˆ’๐œ†๐‘–๐ผ000โˆ—โˆ—โˆ—โˆ’๐‘‹๐‘–00โˆ—โˆ—โˆ—โˆ—โˆ’๐œ€๐‘–๐ผ0โˆ—โˆ—โˆ—โˆ—โˆ—ฮ˜๐‘–4โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ <0,๐‘–โˆˆ๐‘†,(3.26) where ฮ˜๐‘–3=(๐œ€๐‘–๐บ๐‘–๐œ†๐‘–๐‘‹๐‘–๎๐‘‡๐‘–1ฮ˜๐‘–3),ฮ˜๐‘–4=diag(โˆ’๐œ€๐‘–๐ผ,โˆ’๐œ†๐‘–๎๐‘‡๐‘–1,ฮ˜๐‘–4๎๐‘‡),๐‘–1=(๐‘‡๐‘‡๐‘–1๐‘‡๐‘–2+๐‘‡๐‘‡๐‘–2๐‘‡๐‘–1)/2,๎Ti2=โˆ’(TTi1+TTi2)/2, then the NSMJSs (3.25) are exponential mean-square stable with convergence rate ๐›ผand disturbance attenuation๐›พ. In this case, the desired controllers are given as follows: ๐พ๐‘–=๐‘Œ๐‘–๐‘‹๐‘–โˆ’1.(3.27)

Proof. Defining the following Lyapunov function: ๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)=๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘Ÿ(๐‘ก)=๐‘–)=๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ๐‘–๐‘ฅ(๐‘ก),(3.28)
by Itรด formula, we get the following: โ„’๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–)=2๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ๐‘–๐ด๎€บ๎€ท๐‘–+๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ธ๐‘–๐‘ฃ(๐‘ก)+๐‘“๐‘–(๎€ป+๎“๐‘ฅ(๐‘ก))๐‘—โˆˆ๐‘†๐œ†๐‘–๐‘—๐‘ฅ๐‘‡(๐‘ก)๐‘ƒ๐‘—+๐ถ๐‘ฅ(๐‘ก)๎€บ๎€ท๐‘–+๐ท๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ป๐‘–๐‘ฃ(๐‘ก)+๐‘”๐‘–๎€ป(๐‘ฅ(๐‘ก))๐‘‡ร—๐‘ƒ๐‘–๐ถ๎€บ๎€ท๐‘–+๐ท๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ป๐‘–๐‘ฃ(๐‘ก)+๐‘”๐‘–๎€ป(๐‘ฅ(๐‘ก))โ‰ค๐œŽ๐‘‡(๐‘ก)ฮฃ๐‘–๐œŽ(๐‘ก)+๐‘ฅ๐‘‡(๐‘ก)๐บ๐‘‡๐‘–๐‘ƒ๐‘–๐บ๐‘–๐ถ๐‘ฅ(๐‘ก)+2๎€บ๎€ท๐‘–+๐ท๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ป๐‘–๎€ป๐‘ฃ(๐‘ก)๐‘‡๐‘ƒ๐‘–๐‘”๐‘–(๐‘ฅ(๐‘ก)),(3.29) where ๐œŽ๐‘‡(๐‘ก)=[๐‘ฅ๐‘‡(๐‘ก),๐‘ฃ๐‘‡(๐‘ก),๐‘“๐‘‡๐‘–(๐‘ฅ(๐‘ก))],ฮฃ๐‘–=๎‚ต๐‘€๐‘–๐‘ƒ๐‘–๐ธ๐‘–๐‘ƒ๐‘–๐ธ๐‘‡๐‘–๐‘ƒ๐‘–๐‘ƒ00๐‘‡๐‘–00๎‚ถ+๎‚ธ๐ถ๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–๐ป๐‘‡๐‘–0๎‚น๐‘ƒ๐‘–๎‚ธ๐ถ๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–๐ป๐‘‡๐‘–0๎‚น๐‘‡.
By Lemma 3.2, it follows that 2๐ถ๎€บ๎€ท๐‘–+๐ท๐ต๐‘–๐น๐‘–๐พ๐‘–๎€ธ๐‘ฅ(๐‘ก)+๐ป๐‘–๎€ป๐‘ฃ(๐‘ก)๐‘‡๐‘ƒ๐‘–๐‘”๐‘–(๐‘ฅ(๐‘ก))โ‰ค๐œŽ๐‘‡๎ƒฌ๐ถ(๐‘ก)๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–๐ป๐‘‡๐‘–0๎ƒญ๐œ€๐‘–โˆ’1๐ผ๎ƒฌ๐ถ๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–๐ป๐‘‡๐‘–0๎ƒญ๐‘‡๐œŽ(๐‘ก)+๐‘ฅ๐‘‡๎€ท๐œ€(๐‘ก)๐‘–๐‘ƒ๐‘–๐บ๐‘–๎€ธ๐‘‡๐œ€๐‘–โˆ’1๐ผ๎€ท๐œ€๐‘–๐‘ƒ๐‘–๐บ๐‘–๎€ธ๐‘ฅ(๐‘ก),(3.30) from (2.4) (๐‘“๐‘–(๐‘ฅ(๐‘ก))โˆ’๐‘‡1๐‘–๐‘ฅ)๐‘‡(๐‘“๐‘–(๐‘ฅ(๐‘ก))โˆ’๐‘‡2๐‘–๐‘ฅ)โ‰ค0,๐‘–โˆˆ๐‘† which are equivalent to ๎‚ƒ๐‘“๎‚„๐‘ฅ(๐‘ก)(๐‘ฅ(๐‘ก))๐‘‡๎‚ธ๎๐‘‡๐‘–1๎๐‘‡๐‘–2๐‘‡๐‘‡๐‘–2๐ผ๎‚น๎‚ƒ๐‘“๎‚„๐‘ฅ(๐‘ก)(๐‘ฅ(๐‘ก))โ‰ค0,๐‘–โˆˆ๐‘†.(3.31)
Considering the stochastic ๐ปโˆž performance level for the resulting systems (3.25) with nonzero exogenous disturbance input (๐‘ฃ(๐‘ก)โ‰ 0), for any๐‘ก>0, we define that ๎‚ป๎€œ๐ฝ(๐‘ก)=๐ธ๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )d๐‘ ๎‚ผ.(3.32)
By general Itรด formula, for a given positive scalar ๐œ†, we get the following: ๎‚ป๎€œ๐ฝ(๐‘ก)=๐ธ๐‘ก๐‘ก0๎€บ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๎€ป๐‘ )๐‘ฃ(๐‘ )+โ„’๐‘‰(๐‘ฅ(๐‘ ),๐‘ ,๐‘–)d๐‘ ๎‚ผ๎‚ป๎€œโˆ’๐ธ(๐‘‰(๐‘ฅ(๐‘ก),๐‘ก,๐‘–))โ‰ค๐ธ๐‘ก0๎‚ƒ๐‘ง๐‘‡(๐‘ )๐‘ง(๐‘ )โˆ’๐›พ2๐‘ฃ๐‘‡(๐‘ )๐‘ฃ(๐‘ )+โ„’๐‘‰(๐‘ฅ(๐‘ ),๐‘ ,๐‘–)โˆ’๐œ†๐‘–๎€ท๐‘“๐‘–(๐‘ฅ(๐‘ก))โˆ’๐‘‡1๐‘–๎€ธ๐‘ฅ(๐‘ก)๐‘‡๎€ท๐‘“๐‘–(๐‘ฅ(๐‘ก))โˆ’๐‘‡2๐‘–๎€ธ๎‚„๐‘ฅ(๐‘ก)d๐‘ ๎‚ผ๎‚ป๎€œโ‰ค๐ธ๐‘ก0๐œŽ๐‘‡(๐‘ )ฮฉ๐‘–๐œŽ(๐‘ )d๐‘ ๎‚ผ,(3.33) where ฮฉ๐‘–=ฮฃ๐‘–+โŽ›โŽœโŽœโŽ๎€ท๐œ€๐‘–๐‘ƒ๐‘–๐บ๐‘–๎€ธ๐‘‡๐œ€๐‘–โˆ’1๐ผ๎€ท๐œ€๐‘–๐‘ƒ๐‘–๐บ๐‘–๎€ธ+๐ฝ๐‘‡๐‘–๐ฝ๐‘–000โˆ’๐›พ2โŽžโŽŸโŽŸโŽ +๎ƒฌ๐ถ๐ผ0000๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–๐ป๐‘‡๐‘–0๎ƒญ๐œ€๐‘–โˆ’1๐ผ๎ƒฌ๐ถ๐‘‡๐‘–+๐พ๐‘‡๐‘–๐น๐‘‡๐‘–๐ท๐‘‡๐‘–๐ป๐‘‡๐‘–0๎ƒญ๐‘‡+โŽ›โŽœโŽœโŽ๎๐‘‡โˆ’๐œ†๐‘–1๎๐‘‡0โˆ’๐œ†๐‘–2๎๐‘‡000โˆ’๐œ†๐‘‡๐‘–2โŽžโŽŸโŽŸโŽ .0โˆ’๐œ†๐ผ(3.34)
By Schur complement lemma, we see that ฮฉ๐‘–<0 is equivalent to the following matrix inequalities: โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘€๐‘–โˆ’๐œ†๐‘–๎๐‘‡๐‘–1๐ธ๐‘–๐‘ƒ๐‘–โˆ’๐œ†๐‘–๎๐‘‡๐‘–2๐‘‹๐‘–โˆ’1ฮ˜๐‘‡๐‘–2๐‘‹๐‘–โˆ’1ฮ˜๐‘‡๐‘–2๐œ€๐‘–๐‘ƒ๐‘–๐บ๐‘–๐ฝ๐‘‡๐‘–โˆ—โˆ’๐›พ2๐ผ0๐ป๐‘‡๐‘–๐ป๐‘‡๐‘–00โˆ—โˆ—โˆ’๐œ†๐‘–๐ผ0000โˆ—โˆ—โˆ—โˆ’๐‘ƒ๐‘–โˆ’1000โˆ—โˆ—โˆ—โˆ—โˆ’๐œ€๐‘–๐ผ00โˆ—โˆ—โˆ—โˆ—โˆ—โˆ’๐œ€๐‘–โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐ผ0โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ’๐ผ<0,๐‘–โˆˆ๐‘†,(3.35) which is implied in LIMs (3.26). Hence ๐ฝ(๐‘ก)<0.
Therefore, the inequality โ€–๐‘งโ€–๐ธ2<๐›พโ€–๐‘ฃโ€–2 holds. The proof is completed.

Similar to the proof of Theorem 3.5, we can get the following theorem without proof immediately.

Theorem 3.7. If there exist the positive matrices ๐‘‹๐‘–>0, and the constant matrices ๐‘Œ๐‘– with approximate dimensions, for the positive constant ๐œ€๐‘– and the given scalar ๐œ†๐‘–, such that the following LMIs hold ๎ฮ˜๐‘–=โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ๎‚ฮ˜๐‘–1๐ธ๐‘–๐ผโˆ’๐œ†๐‘–๐‘‹๐‘–๎๐‘‡๐‘–2๎‚ฮ˜๐‘‡๐‘–2๎‚ฮ˜๐‘‡๐‘–2๐ต๐‘–๐‘…๐‘–๐‘Œ๐‘‡๐‘–ฮ˜๐‘–3โˆ—โˆ’๐›พ2๐ผ0๐ป๐‘‡๐‘–๐ป๐‘‡๐‘–000โˆ—โˆ—โˆ’๐œ†๐‘–๐ผ00000โˆ—โˆ—โˆ—โˆ’๐‘‹๐‘–0๐ท๐‘–๐‘…๐‘–00โˆ—โˆ—โˆ—โˆ—โˆ’๐œ€๐‘–๐ผ000โˆ—โˆ—โˆ—โˆ—โˆ—โˆ’๐‘…๐‘–00โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ’๐‘…๐‘–๎‚๐นโˆ’2๐‘–00โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—โˆ—ฮ˜๐‘–4โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ <0,๐‘–โˆˆ๐‘†.(3.36) then the NSMJSs (3.27) are exponential mean-square stable with convergence rate ๐›ผand disturbance attenuation๐›พ. In this case, the desired controllers are given as follows: ๐พ๐‘–=๐‘Œ๐‘–๐‘‹๐‘–โˆ’1.(3.37)

4. Numerical Example with Simulation

In this section, we will give an example to show the usefulness of the derived results and the effectiveness of the proposed methods (Figure 1).

Consider linear SMJSs (3.14) with ๐‘†={1,2}, and the system parameters are given as follows:๐ด1=๎ƒฉ๎ƒช0.30.30.5โˆ’0.20โˆ’0.30.100.3,๐ด2=๎ƒฉ๎ƒช,๐ถ0.50.20.2โˆ’0.20โˆ’0.40.200.21=๎ƒฉ๎ƒช0.50.20.100.2โˆ’0.10.3โˆ’0.1โˆ’0.3,๐ถ2=๎ƒฉ๎ƒช,๐ต0.20.10.30.1โˆ’0.30.500.1โˆ’0.51=diag(0.5,0.4,0.5),๐ต2๐ธ=diag(0.5,0.4,0.5),1=๐ธ2=(0.3,0.1,0.5)๐‘‡,๐ป2=๐ป1=(0.2,0.1,0.3)๐‘‡,๐ท2=๐ท1=diag(0.2,0.3,0.4),๐ฝ1๐ฝ=(0.3,0.2,0.6),2=(0.1,โˆ’0.1,0.4),๐›พ=0.9.(4.1)

The actuator failure parameters are as follows:0.2โ‰ค๐‘“๐‘–1โ‰ค0.4,0.1โ‰ค๐‘“๐‘–2โ‰ค0.7,0.1โ‰ค๐‘“๐‘–3โ‰ค0.9,๐‘–โˆˆ๐‘†={1,2}.(4.2)

From (2.8) and (2.9), we have๐น10=๐น20๎‚๐น=diag(0.3,0.4,0.5),10=๎‚๐น20=diag(0.1,0.3,0.4).(4.3)

From Figure 2, we can see that the uncontrolled LSMJSs are not stable, according to Theorem 3.5. By using the LMI toolbox, the controller parameters can be calculated as follows:๐พ1=๎ƒฉ๎ƒชโˆ’56.2264โˆ’6.3843โˆ’67.8069โˆ’1.1129โˆ’8.9588โˆ’3.6802โˆ’0.97540.1795โˆ’3.2600,๐พ2=๎ƒฉ๎ƒช.โˆ’41.78466.0578โˆ’200.8802โˆ’1.1365โˆ’7.5245โˆ’11.02090.1171โˆ’0.4055โˆ’0.7561(4.4)

Figures 3 and 4 give the simulation results of the response for the closed-loop LSMJSs, which confirm that the closed-loop LSMJSs are exponential mean-square stable with convergence rate ๐›ผ and disturbance attenuation ๐›พ.

5. Conclusions

In this paper, we have studied the robust reliable ๐ปโˆž control problems for a class of NSMJSs. The system under study contains Itรด-type stochastic disturbance, Markovian jumps, sector-bounded nonlinearities, and norm-bounded stochastic nonlinearities. Based on the Lyapunov stability theory and Itรด differential rule, sufficient condition which ensures exponential mean-square stable with convergence rate ๐›ผand disturbance attenuation ๐›พ for SMJSs has been established in Lemma 3.3. By the lemma, together with the LMIs techniques, the sufficient conditions for the designation of the robust reliable ๐ปโˆž controller of linear SMJSs and NSMJSs have been obtained in terms of LMIs. Finally, a numerical example has been given to show the usefulness of the derived results and the effectiveness of the proposed methods. It is possible to extend our main results to the NSMJSs with time delay by using delay-dependent techniques, which is one of the future research topics.

Acknowledgments

This work is supported by National Science Foundation of China (NSFC) under Grant 61104127, 60904060, and 61134012 Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) under Grant Y201101.